* Upgrade to using hashicorp/go-metrics@v0.5.4
This also requires bumping the dependencies for:
* memberlist
* serf
* raft
* raft-boltdb
* (and indirectly hashicorp/mdns due to the memberlist or serf update)
Unlike some other HashiCorp products, Nomads root module is currently expected to be consumed by others. This means that it needs to be treated more like our libraries and upgrade to hashicorp/go-metrics by utilizing its compat packages. This allows those importing the root module to control the metrics module used via build tags.
The Nomad client can now optionally emit telemetry data from the
prerun and prestart hooks. This allows operators to monitor and
alert on failures and time taken to complete.
The new datapoints are:
- nomad.client.alloc_hook.prerun.success (counter)
- nomad.client.alloc_hook.prerun.failed (counter)
- nomad.client.alloc_hook.prerun.elapsed (sample)
- nomad.client.task_hook.prestart.success (counter)
- nomad.client.task_hook.prestart.failed (counter)
- nomad.client.task_hook.prestart.elapsed (sample)
The hook execution time is useful to Nomad engineering and will
help optimize code where possible and understand job specification
impacts on hook performance.
Currently only the PreRun and PreStart hooks have telemetry
enabled, so we limit the number of new metrics being produced.
On supported platforms, the secrets directory is a 1MiB tmpfs. But some tasks
need larger space for downloading large secrets. This is especially the case for
tasks using `templates`, which need extra room to write a temporary file to the
secrets directory that gets renamed to the old file atomically.
This changeset allows increasing the size of the tmpfs in the `resources`
block. Because this is a memory resource, we need to include it in the memory we
allocate for scheduling purposes. The task is already prevented from using more
memory in the tmpfs than the `resources.memory` field allows, but can bypass
that limit by writing to the tmpfs via `template` or `artifact` blocks.
Therefore, we need to account for the size of the tmpfs in the allocation
resources. Simply adding it to the memory needed when we create the allocation
allows it to be accounted for in all downstream consumers, and then we'll
subtract that amount from the memory resources just before configuring the task
driver.
For backwards compatibility, the default value of 1MiB is "free" and ignored by
the scheduler. Otherwise we'd be increasing the allocated resources for every
existing alloc, which could cause problems across upgrades. If a user explicitly
sets `resources.secrets = 1` it will no longer be free.
Fixes: https://github.com/hashicorp/nomad/issues/2481
Ref: https://hashicorp.atlassian.net/browse/NET-10070
this is the CE side of an Enterprise-only feature.
a job trying to use this in CE will fail to validate.
to enable daily-scheduled execution entirely client-side,
a job may now contain:
task "name" {
schedule {
cron {
start = "0 12 * * * *" # may not include "," or "/"
end = "0 16" # partial cron, with only {minute} {hour}
timezone = "EST" # anything in your tzdb
}
}
...
and everything about the allocation will be placed as usual,
but if outside the specified schedule, the taskrunner will block
on the client, waiting on the schedule start, before proceeding
with the task driver execution, etc.
this includes a taksrunner hook, which watches for the end of
the schedule, at which point it will kill the task.
then, restarts-allowing, a new task will start and again block
waiting for start, and so on.
this also includes all the plumbing required to pipe API calls
through from command->api->agent->server->client, so that
tasks can be force-run, force-paused, or resume the schedule
on demand.
This change exposes CNI configuration details of a network
namespace as environment variables. This allows a task to use
these value to configure itself; a potential use case is to run
a Raft application binding to IP and Port details configured using
the bridge network mode.
* exec2: implement dynamic workload users taskrunner hook
This PR impelements a TR hook for allocating dynamic workload users from
a pool managed by the Nomad client. This adds a new task driver Capability,
DynamicWorkloadUsers - which a task driver must indicate in order to make
use of this feature.
The client config plumbing is coming in a followup PR - in the RFC we
realized having a client.users block would be nice to have, with some
additional unrelated options being moved from the deprecated client.options
config.
* learn to spell
CNI plugins may set DNS configuration, but this isn't threaded through to the
task configuration so that we can write it to the `/etc/resolv.conf` file as
needed. Add the `AllocNetworkStatus` to the alloc hook resources so they're
accessible from the taskrunner. Any DNS entries provided by the user will
override these values.
Fixes: https://github.com/hashicorp/nomad/issues/11102
The allocrunner has a service registration handler that proxies various API
calls to Consul. With multi-cluster support (for ENT), the service registration
handler is what selects the correct Consul client. The name of this field in the
allocrunner and taskrunner code base looks like it's referring to the actual
Consul API client. This was actually the case before Nomad native service
discovery was implemented, but now the name is misleading.
* core: plumbing to support numa aware scheduling
* core: apply node resources compatibility upon fsm rstore
Handle the case where an upgraded server dequeus an evaluation before
a client triggers a new fingerprint - which would be needed to cause
the compatibility fix to run. By running the compat fix on restore the
server will immediately have the compatible pseudo topology to use.
* lint: learn how to spell pseudo
When agents start, they create a shared Consul client that is then wrapped as
various interfaces for testability, and used in constructing the Nomad client
and server. The interfaces that support workload services (rather than the Nomad
agent itself) need to support multiple Consul clusters for Nomad
Enterprise. Update these interfaces to be factory functions that return the
Consul client for a given cluster name. Update the `ServiceClient` to split
workload updates between clusters by creating a wrapper around all the clients
that delegates to the cluster-specific `ServiceClient`.
Ref: https://github.com/hashicorp/team-nomad/issues/404
Since the allocation in the task runner is updated in a separate
goroutine, a race condition may happen where the task is started but the
prestart hooks are skipped because the allocation became terminal.
Checking for a terminal allocation before proceeding with the task start
ensures the task only runs if the prestart hooks are also executed.
Since `shouldShutdown()` only uses terminal allocation status, it
remains `true` after the first transition, so it's safe to check it
again after the prestart hooks as it will never revert to `false`.
This commit splits identity_hook between the allocrunner and taskrunner. The
allocrunner-level part of the hook signs each task identity, and the
taskrunner-level part picks it up and stores secrets for each task.
The code revamps the WIDMgr, which is now split into 2 interfaces:
IdentityManager which manages renewals of signatures and handles sending
updates to subscribers via Watch method, and IdentitySigner which only does the
signing.
This work is necessary for having a unified Consul login workflow that comes
with the new Consul integration. A new, allocrunner-level consul_hook will now
be the only hook doing Consul authentication.
Nomad Enterprise will support configuring multiple Vault clients. Instead of
having a single Vault client field in the Nomad client, we'll have a function
that callers can parameterize by the Vault cluster name that returns the
correctly configured Vault API client wrapper.
* client: refactor cpuset partitioning
This PR updates the way Nomad client manages the split between tasks
that make use of resources.cpus vs. resources.cores.
Previously, each task was explicitly assigned which CPU cores they were
able to run on. Every time a task was started or destroyed, all other
tasks' cpusets would need to be updated. This was inefficient and would
crush the Linux kernel when a client would try to run ~400 or so tasks.
Now, we make use of cgroup heirarchy and cpuset inheritence to efficiently
manage cpusets.
* cr: tweaks for feedback
Allows for multiple `identity{}` blocks for tasks along with user-specified audiences. This is a building block to allow workload identities to be used with Consul, Vault and 3rd party JWT based auth methods.
Expiration is still unimplemented and is necessary for JWTs to be used securely, so that's up next.
---------
Co-authored-by: Tim Gross <tgross@hashicorp.com>
to avoid leaking task resources (e.g. containers,
iptables) if allocRunner prerun fails during
restore on client restart.
now if prerun fails, TaskRunner.MarkFailedKill()
will only emit an event, mark the task as failed,
and cancel the tr's killCtx, so then ar.runTasks()
-> tr.Run() can take care of the actual cleanup.
removed from (formerly) tr.MarkFailedDead(),
now handled by tr.Run():
* set task state as dead
* save task runner local state
* task stop hooks
also done in tr.Run() now that it's not skipped:
* handleKill() to kill tasks while respecting
their shutdown delay, and retrying as needed
* also includes task preKill hooks
* clearDriverHandle() to destroy the task
and associated resources
* task exited hooks
The allocrunner has a facility for passing data written by allocrunner hooks to
taskrunner hooks. Currently the only consumers of this facility are the
allocrunner CSI hook (which writes data) and the taskrunner volume hook (which
reads that same data).
The allocrunner hook for CSI volumes doesn't set the alloc hook resources
atomically. Instead, it gets the current resources and then writes a new version
back. Because the CSI hook is currently the only writer and all readers happen
long afterwards, this should be safe but #16623 shows there's some sequence of
events during restore where this breaks down.
Refactor hook resources so that hook data is accessed via setters and getters
that hold the mutex.
* client: avoid unconsumed channel in timer construction
This PR fixes a bug introduced in #11983 where a Timer initialized with 0
duration causes an immediate tick, even if Reset is called before reading the
channel. The fix is to avoid doing that, instead creating a Timer with a non-zero
initial wait time, and then immediately calling Stop.
* pr: remove redundant stop
Allocations created before 1.4.0 will not have a workload identity token. When
the client running these allocs is upgraded to 1.4.x, the identity hook will run
and replace the node secret ID token used previously with an empty string. This
causes service discovery queries to fail.
Fallback to the node's secret ID when the allocation doesn't have a signed
identity. Note that pre-1.4.0 allocations won't have templates that read
Variables, so there's no threat that this new node ID secret will be able to
read data that the allocation shouldn't have access to.
* cleanup: refactor MapStringStringSliceValueSet to be cleaner
* cleanup: replace SliceStringToSet with actual set
* cleanup: replace SliceStringSubset with real set
* cleanup: replace SliceStringContains with slices.Contains
* cleanup: remove unused function SliceStringHasPrefix
* cleanup: fixup StringHasPrefixInSlice doc string
* cleanup: refactor SliceSetDisjoint to use real set
* cleanup: replace CompareSliceSetString with SliceSetEq
* cleanup: replace CompareMapStringString with maps.Equal
* cleanup: replace CopyMapStringString with CopyMap
* cleanup: replace CopyMapStringInterface with CopyMap
* cleanup: fixup more CopyMapStringString and CopyMapStringInt
* cleanup: replace CopySliceString with slices.Clone
* cleanup: remove unused CopySliceInt
* cleanup: refactor CopyMapStringSliceString to be generic as CopyMapOfSlice
* cleanup: replace CopyMap with maps.Clone
* cleanup: run go mod tidy
* allocrunner: handle lifecycle when all tasks die
When all tasks die the Coordinator must transition to its terminal
state, coordinatorStatePoststop, to unblock poststop tasks. Since this
could happen at any time (for example, a prestart task dies), all states
must be able to transition to this terminal state.
* allocrunner: implement different alloc restarts
Add a new alloc restart mode where all tasks are restarted, even if they
have already exited. Also unifies the alloc restart logic to use the
implementation that restarts tasks concurrently and ignores
ErrTaskNotRunning errors since those are expected when restarting the
allocation.
* allocrunner: allow tasks to run again
Prevent the task runner Run() method from exiting to allow a dead task
to run again. When the task runner is signaled to restart, the function
will jump back to the MAIN loop and run it again.
The task runner determines if a task needs to run again based on two new
task events that were added to differentiate between a request to
restart a specific task, the tasks that are currently running, or all
tasks that have already run.
* api/cli: add support for all tasks alloc restart
Implement the new -all-tasks alloc restart CLI flag and its API
counterpar, AllTasks. The client endpoint calls the appropriate restart
method from the allocrunner depending on the restart parameters used.
* test: fix tasklifecycle Coordinator test
* allocrunner: kill taskrunners if all tasks are dead
When all non-poststop tasks are dead we need to kill the taskrunners so
we don't leak their goroutines, which are blocked in the alloc restart
loop. This also ensures the allocrunner exits on its own.
* taskrunner: fix tests that waited on WaitCh
Now that "dead" tasks may run again, the taskrunner Run() method will
not return when the task finishes running, so tests must wait for the
task state to be "dead" instead of using the WaitCh, since it won't be
closed until the taskrunner is killed.
* tests: add tests for all tasks alloc restart
* changelog: add entry for #14127
* taskrunner: fix restore logic.
The first implementation of the task runner restore process relied on
server data (`tr.Alloc().TerminalStatus()`) which may not be available
to the client at the time of restore.
It also had the incorrect code path. When restoring a dead task the
driver handle always needs to be clear cleanly using `clearDriverHandle`
otherwise, after exiting the MAIN loop, the task may be killed by
`tr.handleKill`.
The fix is to store the state of the Run() loop in the task runner local
client state: if the task runner ever exits this loop cleanly (not with
a shutdown) it will never be able to run again. So if the Run() loops
starts with this local state flag set, it must exit early.
This local state flag is also being checked on task restart requests. If
the task is "dead" and its Run() loop is not active it will never be
able to run again.
* address code review requests
* apply more code review changes
* taskrunner: add different Restart modes
Using the task event to differentiate between the allocrunner restart
methods proved to be confusing for developers to understand how it all
worked.
So instead of relying on the event type, this commit separated the logic
of restarting an taskRunner into two methods:
- `Restart` will retain the current behaviour and only will only restart
the task if it's currently running.
- `ForceRestart` is the new method where a `dead` task is allowed to
restart if its `Run()` method is still active. Callers will need to
restart the allocRunner taskCoordinator to make sure it will allow the
task to run again.
* minor fixes
The current implementation for the task coordinator unblocks tasks by
performing destructive operations over its internal state (like closing
channels and deleting maps from keys).
This presents a problem in situations where we would like to revert the
state of a task, such as when restarting an allocation with tasks that
have already exited.
With this new implementation the task coordinator behaves more like a
finite state machine where task may be blocked/unblocked multiple times
by performing a state transition.
This initial part of the work only refactors the task coordinator and
is functionally equivalent to the previous implementation. Future work
will build upon this to provide bug fixes and enhancements.
In order to support implicit ACL policies for tasks to get their own
secrets, each task would need to have its own ACL token. This would
add extra raft overhead as well as new garbage collection jobs for
cleaning up task-specific ACL tokens. Instead, Nomad will create a
workload Identity Claim for each task.
An Identity Claim is a JSON Web Token (JWT) signed by the server’s
private key and attached to an Allocation at the time a plan is
applied. The encoded JWT can be submitted as the X-Nomad-Token header
to replace ACL token secret IDs for the RPCs that support identity
claims.
Whenever a key is is added to a server’s keyring, it will use the key
as the seed for a Ed25519 public-private private keypair. That keypair
will be used for signing the JWT and for verifying the JWT.
This implementation is a ruthlessly minimal approach to support the
secure variables feature. When a JWT is verified, the allocation ID
will be checked against the Nomad state store, and non-existent or
terminal allocation IDs will cause the validation to be rejected. This
is sufficient to support the secure variables feature at launch
without requiring implementation of a background process to renew
soon-to-expire tokens.
This PR fixes a bug where client configuration max_kill_timeout was
not being enforced. The feature was introduced in 9f44780 but seems
to have been removed during the major drivers refactoring.
We can make sure the value is enforced by pluming it through the DriverHandler,
which now uses the lesser of the task.killTimeout or client.maxKillTimeout.
Also updates Event.SetKillTimeout to require both the task.killTimeout and
client.maxKillTimeout so that we don't make the mistake of using the wrong
value - as it was being given only the task.killTimeout before.
Fix numerous go-getter security issues:
- Add timeouts to http, git, and hg operations to prevent DoS
- Add size limit to http to prevent resource exhaustion
- Disable following symlinks in both artifacts and `job run`
- Stop performing initial HEAD request to avoid file corruption on
retries and DoS opportunities.
**Approach**
Since Nomad has no ability to differentiate a DoS-via-large-artifact vs
a legitimate workload, all of the new limits are configurable at the
client agent level.
The max size of HTTP downloads is also exposed as a node attribute so
that if some workloads have large artifacts they can specify a high
limit in their jobspecs.
In the future all of this plumbing could be extended to enable/disable
specific getters or artifact downloading entirely on a per-node basis.
This PR modifies raw_exec and exec to ensure the cgroup for a task
they are driving still exists during a task restart. These drivers
have the same bug but with different root cause.
For raw_exec, we were removing the cgroup in 2 places - the cpuset
manager, and in the unix containment implementation (the thing that
uses freezer cgroup to clean house). During a task restart, the
containment would remove the cgroup, and when the task runner hooks
went to start again would block on waiting for the cgroup to exist,
which will never happen, because it gets created by the cpuset manager
which only runs as an alloc pre-start hook. The fix here is to simply
not delete the cgroup in the containment implementation; killing the
PIDs is enough. The removal happens in the cpuset manager later anyway.
For exec, it's the same idea, except DestroyTask is called on task
failure, which in turn calls into libcontainer, which in turn deletes
the cgroup. In this case we do not have control over the deletion of
the cgroup, so instead we hack the cgroup back into life after the
call to DestroyTask.
All of this only applies to cgroups v2.
This commit performs refactoring to pull out common service
registration objects into a new `client/serviceregistration`
package. This new package will form the base point for all
client specific service registration functionality.
The Consul specific implementation is not moved as it also
includes non-service registration implementations; this reduces
the blast radius of the changes as well.
This PR replaces use of time.After with a safe helper function
that creates a time.Timer to use instead. The new function returns
both a time.Timer and a Stop function that the caller must handle.
Unlike time.NewTimer, the helper function does not panic if the duration
set is <= 0.