* exec2: add client support for unveil filesystem isolation mode
This PR adds support for a new filesystem isolation mode, "Unveil". The
mode introduces a "alloc_mounts" directory where tasks have user-owned
directory structure which are bind mounts into the real alloc directory
structure. This enables a task driver to use landlock (and maybe the
real unveil on openbsd one day) to isolate a task to the task owned
directory structure, providing sandboxing.
* actually create alloc-mounts-dir directory
* fix doc strings about alloc mount dir paths
* Add OomKilled field to executor proto format
* Teach linux executor to detect and report OOMs
* Teach exec driver to propagate OOMKill information
* Fix data race
* use tail /dev/zero to create oom condition
* use new test framework
* minor tweaks to executor test
* add cl entry
* remove type conversion
---------
Co-authored-by: Marvin Chin <marvinchin@users.noreply.github.com>
Co-authored-by: Seth Hoenig <shoenig@duck.com>
* drivers: plumb hardware topology via grpc into drivers
This PR swaps out the temporary use of detecting system hardware manually
in each driver for using the Client's detected topology by plumbing the
data over gRPC. This ensures that Client configuration is taken to account
consistently in all references to system topology.
* cr: use enum instead of bool for core grade
* cr: fix test slit tables to be possible
* client: refactor cpuset partitioning
This PR updates the way Nomad client manages the split between tasks
that make use of resources.cpus vs. resources.cores.
Previously, each task was explicitly assigned which CPU cores they were
able to run on. Every time a task was started or destroyed, all other
tasks' cpusets would need to be updated. This was inefficient and would
crush the Linux kernel when a client would try to run ~400 or so tasks.
Now, we make use of cgroup heirarchy and cpuset inheritence to efficiently
manage cpusets.
* cr: tweaks for feedback
* Update ioutil library references to os and io respectively for drivers package
No user facing changes so I assume no change log is required
* Fix failing tests
Log lines which include an error should use the full term "error"
as the context key. This provides consistency across the codebase
and avoids a Go style which operators might not be aware of.
* test: use `T.TempDir` to create temporary test directory
This commit replaces `ioutil.TempDir` with `t.TempDir` in tests. The
directory created by `t.TempDir` is automatically removed when the test
and all its subtests complete.
Prior to this commit, temporary directory created using `ioutil.TempDir`
needs to be removed manually by calling `os.RemoveAll`, which is omitted
in some tests. The error handling boilerplate e.g.
defer func() {
if err := os.RemoveAll(dir); err != nil {
t.Fatal(err)
}
}
is also tedious, but `t.TempDir` handles this for us nicely.
Reference: https://pkg.go.dev/testing#T.TempDir
Signed-off-by: Eng Zer Jun <engzerjun@gmail.com>
* test: fix TestLogmon_Start_restart on Windows
Signed-off-by: Eng Zer Jun <engzerjun@gmail.com>
* test: fix failing TestConsul_Integration
t.TempDir fails to perform the cleanup properly because the folder is
still in use
testing.go:967: TempDir RemoveAll cleanup: unlinkat /tmp/TestConsul_Integration2837567823/002/191a6f1a-5371-cf7c-da38-220fe85d10e5/web/secrets: device or resource busy
Signed-off-by: Eng Zer Jun <engzerjun@gmail.com>
This PR modifies raw_exec and exec to ensure the cgroup for a task
they are driving still exists during a task restart. These drivers
have the same bug but with different root cause.
For raw_exec, we were removing the cgroup in 2 places - the cpuset
manager, and in the unix containment implementation (the thing that
uses freezer cgroup to clean house). During a task restart, the
containment would remove the cgroup, and when the task runner hooks
went to start again would block on waiting for the cgroup to exist,
which will never happen, because it gets created by the cpuset manager
which only runs as an alloc pre-start hook. The fix here is to simply
not delete the cgroup in the containment implementation; killing the
PIDs is enough. The removal happens in the cpuset manager later anyway.
For exec, it's the same idea, except DestroyTask is called on task
failure, which in turn calls into libcontainer, which in turn deletes
the cgroup. In this case we do not have control over the deletion of
the cgroup, so instead we hack the cgroup back into life after the
call to DestroyTask.
All of this only applies to cgroups v2.
This test exercises upgrades between 0.8 and Nomad versions greater
than 0.9. We have not supported 0.8.x in a very long time and in any
case the test has been marked to skip because the downloader doesn't
work.
This PR adds support for the raw_exec driver on systems with only cgroups v2.
The raw exec driver is able to use cgroups to manage processes. This happens
only on Linux, when exec_driver is enabled, and the no_cgroups option is not
set. The driver uses the freezer controller to freeze processes of a task,
issue a sigkill, then unfreeze. Previously the implementation assumed cgroups
v1, and now it also supports cgroups v2.
There is a bit of refactoring in this PR, but the fundamental design remains
the same.
Closes#12351#12348
This PR introduces support for using Nomad on systems with cgroups v2 [1]
enabled as the cgroups controller mounted on /sys/fs/cgroups. Newer Linux
distros like Ubuntu 21.10 are shipping with cgroups v2 only, causing problems
for Nomad users.
Nomad mostly "just works" with cgroups v2 due to the indirection via libcontainer,
but not so for managing cpuset cgroups. Before, Nomad has been making use of
a feature in v1 where a PID could be a member of more than one cgroup. In v2
this is no longer possible, and so the logic around computing cpuset values
must be modified. When Nomad detects v2, it manages cpuset values in-process,
rather than making use of cgroup heirarchy inheritence via shared/reserved
parents.
Nomad will only activate the v2 logic when it detects cgroups2 is mounted at
/sys/fs/cgroups. This means on systems running in hybrid mode with cgroups2
mounted at /sys/fs/cgroups/unified (as is typical) Nomad will continue to
use the v1 logic, and should operate as before. Systems that do not support
cgroups v2 are also not affected.
When v2 is activated, Nomad will create a parent called nomad.slice (unless
otherwise configured in Client conifg), and create cgroups for tasks using
naming convention <allocID>-<task>.scope. These follow the naming convention
set by systemd and also used by Docker when cgroups v2 is detected.
Client nodes now export a new fingerprint attribute, unique.cgroups.version
which will be set to 'v1' or 'v2' to indicate the cgroups regime in use by
Nomad.
The new cpuset management strategy fixes#11705, where docker tasks that
spawned processes on startup would "leak". In cgroups v2, the PIDs are
started in the cgroup they will always live in, and thus the cause of
the leak is eliminated.
[1] https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.htmlCloses#11289Fixes#11705#11773#11933
This PR upgrades our CI images and fixes some affected tests.
- upgrade go-machine-image to premade latest ubuntu LTS (ubuntu-2004:202111-02)
- eliminate go-machine-recent-image (no longer necessary)
- manage GOPATH in GNUMakefile (see https://discuss.circleci.com/t/gopath-is-set-to-multiple-directories/7174)
- fix tcp dial error check (message seems to be OS specific)
- spot check values measured instead of specifically 'RSS' (rss no longer reported in cgroups v2)
- use safe MkdirTemp for generating tmpfiles
NOT applied: (too flakey)
- eliminate setting GOMAXPROCS=1 (build tools were also affected by this setting)
- upgrade resource type for all imanges to large (2C -> 4C)
This changeset does not introduce any functional change for the
docker driver, but rather cleans up the implementation around
computing configured capabilities by re-using code written for
the exec/java task drivers.
This PR enables setting allow_caps on the exec driver
plugin configuration, as well as cap_add and cap_drop in
exec task configuration. These options replicate the
functionality already present in the docker task driver.
Important: this change also reduces the default set of
capabilities enabled by the exec driver to match the
default set enabled by the docker driver. Until v1.0.5
the exec task driver would enable all capabilities supported
by the operating system. v1.0.5 removed NET_RAW from that
list of default capabilities, but left may others which
could potentially also be leveraged by compromised tasks.
Important: the "root" user is still special cased when
used with the exec driver. Older versions of Nomad enabled
enabled all capabilities supported by the operating system
for tasks set with the root user. To maintain compatibility
with existing clusters we continue supporting this "feature",
however we maintain support for the legacy set of capabilities
rather than enabling all capabilities now supported on modern
operating systems.
This PR adds pid_mode and ipc_mode options to the exec and java task
driver config options. By default these will defer to the default_pid_mode
and default_ipc_mode agent plugin options created in #9969. Setting
these values to "host" mode disables isolation for the task. Doing so
is not recommended, but may be necessary to support legacy job configurations.
Closes#9970
This PR adds default_pid_mode and default_ipc_mode options to the exec and java
task drivers. By default these will default to "private" mode, enabling PID and
IPC isolation for tasks. Setting them to "host" mode disables isolation. Doing
so is not recommended, but may be necessary to support legacy job configurations.
Closes#9969
My latest Vagrant box contains an empty cgroup name that isn't used for
isolation:
```
$ cat /proc/self/cgroup | grep ::
0::/user.slice/user-1000.slice/session-17.scope
```