When we renew Vault tokens, we use the lease duration to determine how often to
renew. But we also set an `increment` value which is never updated from the
initial 30s. For periodic tokens this is not a problem because the `increment`
field is ignored on renewal. But for non-periodic tokens this prevents the token
TTL from being properly incremented. This behavior has been in place since the
initial Vault client implementation in #1606 but before the switch to workload
identity most (all?) tokens being created were periodic tokens so this was never
detected.
Fix this bug by updating the request's `increment` field to the lease duration
on each renewal.
Also switch out a `time.After` call in backoff of the derive token caller with a
safe timer so that we don't have to spawn a new goroutine per loop, and have
tighter control over when that's GC'd.
Ref: https://github.com/hashicorp/nomad/pull/1606
Ref: https://github.com/hashicorp/nomad/issues/25812
Some of our allocrunner hooks require a task environment for interpolating values based on the node or allocation. But several of the hooks accept an already-built environment or builder and then keep that in memory. Both of these retain a copy of all the node attributes and allocation metadata, which balloons memory usage until the allocation is GC'd.
While we'd like to look into ways to avoid keeping the allocrunner around entirely (see #25372), for now we can significantly reduce memory usage by creating the task environment on-demand when calling allocrunner methods, rather than persisting it in the allocrunner hooks.
In doing so, we uncover two other bugs:
* The WID manager, the group service hook, and the checks hook have to interpolate services for specific tasks. They mutated a taskenv builder to do so, but each time they mutate the builder, they write to the same environment map. When a group has multiple tasks, it's possible for one task to set an environment variable that would then be interpolated in the service definition for another task if that task did not have that environment variable. Only the service definition interpolation is impacted. This does not leak env vars across running tasks, as each taskrunner has its own builder.
To fix this, we move the `UpdateTask` method off the builder and onto the taskenv as the `WithTask` method. This makes a shallow copy of the taskenv with a deep clone of the environment map used for interpolation, and then overwrites the environment from the task.
* The checks hook interpolates Nomad native service checks only on `Prerun` and not on `Update`. This could cause unexpected deregistration and registration of checks during in-place updates. To fix this, we make sure we interpolate in the `Update` method.
I also bumped into an incorrectly implemented interface in the CSI hook. I've pulled that and some better guardrails out to https://github.com/hashicorp/nomad/pull/25472.
Fixes: https://github.com/hashicorp/nomad/issues/25269
Fixes: https://hashicorp.atlassian.net/browse/NET-12310
Ref: https://github.com/hashicorp/nomad/issues/25372
The legacy workflow for Vault whereby servers were configured
using a token to provide authentication to the Vault API has now
been removed. This change also removes the workflow where servers
were responsible for deriving Vault tokens for Nomad clients.
The deprecated Vault config options used byi the Nomad agent have
all been removed except for "token" which is still in use by the
Vault Transit keyring implementation.
Job specification authors can no longer use the "vault.policies"
parameter and should instead use "vault.role" when not using the
default workload identity.
---------
Co-authored-by: Tim Gross <tgross@hashicorp.com>
Co-authored-by: Aimee Ukasick <aimee.ukasick@hashicorp.com>
* Upgrade to using hashicorp/go-metrics@v0.5.4
This also requires bumping the dependencies for:
* memberlist
* serf
* raft
* raft-boltdb
* (and indirectly hashicorp/mdns due to the memberlist or serf update)
Unlike some other HashiCorp products, Nomads root module is currently expected to be consumed by others. This means that it needs to be treated more like our libraries and upgrade to hashicorp/go-metrics by utilizing its compat packages. This allows those importing the root module to control the metrics module used via build tags.
The Nomad client can now optionally emit telemetry data from the
prerun and prestart hooks. This allows operators to monitor and
alert on failures and time taken to complete.
The new datapoints are:
- nomad.client.alloc_hook.prerun.success (counter)
- nomad.client.alloc_hook.prerun.failed (counter)
- nomad.client.alloc_hook.prerun.elapsed (sample)
- nomad.client.task_hook.prestart.success (counter)
- nomad.client.task_hook.prestart.failed (counter)
- nomad.client.task_hook.prestart.elapsed (sample)
The hook execution time is useful to Nomad engineering and will
help optimize code where possible and understand job specification
impacts on hook performance.
Currently only the PreRun and PreStart hooks have telemetry
enabled, so we limit the number of new metrics being produced.
On supported platforms, the secrets directory is a 1MiB tmpfs. But some tasks
need larger space for downloading large secrets. This is especially the case for
tasks using `templates`, which need extra room to write a temporary file to the
secrets directory that gets renamed to the old file atomically.
This changeset allows increasing the size of the tmpfs in the `resources`
block. Because this is a memory resource, we need to include it in the memory we
allocate for scheduling purposes. The task is already prevented from using more
memory in the tmpfs than the `resources.memory` field allows, but can bypass
that limit by writing to the tmpfs via `template` or `artifact` blocks.
Therefore, we need to account for the size of the tmpfs in the allocation
resources. Simply adding it to the memory needed when we create the allocation
allows it to be accounted for in all downstream consumers, and then we'll
subtract that amount from the memory resources just before configuring the task
driver.
For backwards compatibility, the default value of 1MiB is "free" and ignored by
the scheduler. Otherwise we'd be increasing the allocated resources for every
existing alloc, which could cause problems across upgrades. If a user explicitly
sets `resources.secrets = 1` it will no longer be free.
Fixes: https://github.com/hashicorp/nomad/issues/2481
Ref: https://hashicorp.atlassian.net/browse/NET-10070
Nomad creates Consul ACL tokens and service registrations to support Consul
service mesh workloads, before bootstrapping the Envoy proxy. Nomad always talks
to the local Consul agent and never directly to the Consul servers. But the
local Consul agent talks to the Consul servers in stale consistency mode to
reduce load on the servers. This can result in the Nomad client making the Envoy
bootstrap request with a tokens or services that have not yet replicated to the
follower that the local client is connected to. This request gets a 404 on the
ACL token and that negative entry gets cached, preventing any retries from
succeeding.
To workaround this, we'll use a method described by our friends over on
`consul-k8s` where after creating the objects in Consul we try to read them from
the local agent in stale consistency mode (which prevents a failed read from
being cached). This cannot completely eliminate this source of error because
it's possible that Consul cluster replication is unhealthy at the time we need
it, but this should make Envoy bootstrap significantly more robust.
This changset adds preflight checks for the objects we create in Consul:
* We add a preflight check for ACL tokens after we login via via Workload
Identity and in the function we use to derive tokens in the legacy
workflow. We do this check early because we also want to use this token for
registering group services in the allocrunner hooks.
* We add a preflight check for services right before we bootstrap Envoy in the
taskrunner hook, so that we have time for our service client to batch updates
to the local Consul agent in addition to the local agent sync.
We've added the timeouts to be configurable via node metadata rather than the
usual static configuration because for most cases, users should not need to
touch or even know these values are configurable; the configuration is mostly
available for testing.
Fixes: https://github.com/hashicorp/nomad/issues/9307
Fixes: https://github.com/hashicorp/nomad/issues/10451
Fixes: https://github.com/hashicorp/nomad/issues/20516
Ref: https://github.com/hashicorp/consul-k8s/pull/887
Ref: https://hashicorp.atlassian.net/browse/NET-10051
Ref: https://hashicorp.atlassian.net/browse/NET-9273
Follow-up: https://hashicorp.atlassian.net/browse/NET-10138
* drivers/raw_exec: enable setting cgroup override values
This PR enables configuration of cgroup override values on the `raw_exec`
task driver. WARNING: setting cgroup override values eliminates any
gauruntee Nomad can make about resource availability for *any* task on
the client node.
For cgroup v2 systems, set a single unified cgroup path using `cgroup_v2_override`.
The path may be either absolute or relative to the cgroup root.
config {
cgroup_v2_override = "custom.slice/app.scope"
}
or
config {
cgroup_v2_override = "/sys/fs/cgroup/custom.slice/app.scope"
}
For cgroup v1 systems, set a per-controller path for each controller using
`cgroup_v1_override`. The path(s) may be either absolute or relative to
the controller root.
config {
cgroup_v1_override = {
"pids": "custom/app",
"cpuset": "custom/app",
}
}
or
config {
cgroup_v1_override = {
"pids": "/sys/fs/cgroup/pids/custom/app",
"cpuset": "/sys/fs/cgroup/cpuset/custom/app",
}
}
* drivers/rawexec: ensure only one of v1/v2 cgroup override is set
* drivers/raw_exec: executor should error if setting cgroup does not work
* drivers/raw_exec: create cgroups in raw_exec tests
* drivers/raw_exec: ensure we fail to start if custom cgroup set and non-root
* move custom cgroup func into shared file
---------
Co-authored-by: Michael Schurter <mschurter@hashicorp.com>
The `consul_hook` in the allocrunner gets a separate Consul token for each task,
even if the tasks' identities have the same name, but used the identity name as
the key to the alloc hook resources map. This means the last task in the group
overwrites the Consul tokens of all other tasks.
Fix this by adding the task name to the key in the allocrunner's
`consul_hook`. And update the taskrunner's `consul_hook` to expect the task
name in the key.
Fixes: https://github.com/hashicorp/nomad/issues/20374
Fixes: https://hashicorp.atlassian.net/browse/NOMAD-614
Services can have some of their string fields interpolated. The new Workload
Identity flow doesn't interpolate the services before requesting signed
identities or using those identities to get Consul tokens.
Add support for interpolation to the WID manager and the Consul tokens hook by
providing both with a taskenv builder. Add an "interpolate workload" field to
the WI handle to allow passing the original workload name to the server so the
server can find the correct service to sign.
This changeset also makes two related test improvements:
* Remove the mock WID manager, which was only used in the Consul hook tests and
isn't necessary so long as we provide the real WID manager with the mock
signer and never call `Run` on it. It wasn't feasible to exercise the correct
behavior without this refactor, as the mocks were bypassing the new code.
* Fixed swapped expect-vs-actual assertions on the `consul_hook` tests.
Fixes: https://github.com/hashicorp/nomad/issues/20025
In #20007 we fixed a bug where the DNS configuration set by CNI plugins was not
threaded through to the task configuration. This resulted in a regression where
a DNS override set by `dockerd` was not respected for `bridge` mode
networking. Our existing handling of CNI DNS incorrectly assumed that the DNS
field would be empty, when in fact it contains a single empty DNS struct.
Handle this case correctly by checking whether the DNS struct we get back from
CNI has any nameservers, and ignore it if it doesn't. Expand test coverage of
this case.
Fixes: https://github.com/hashicorp/nomad/issues/20174
* exec2: add client support for unveil filesystem isolation mode
This PR adds support for a new filesystem isolation mode, "Unveil". The
mode introduces a "alloc_mounts" directory where tasks have user-owned
directory structure which are bind mounts into the real alloc directory
structure. This enables a task driver to use landlock (and maybe the
real unveil on openbsd one day) to isolate a task to the task owned
directory structure, providing sandboxing.
* actually create alloc-mounts-dir directory
* fix doc strings about alloc mount dir paths
CNI plugins may set DNS configuration, but this isn't threaded through to the
task configuration so that we can write it to the `/etc/resolv.conf` file as
needed. Add the `AllocNetworkStatus` to the alloc hook resources so they're
accessible from the taskrunner. Any DNS entries provided by the user will
override these values.
Fixes: https://github.com/hashicorp/nomad/issues/11102
PRs #19034 and #19040 accidentally conflicted with each other without a merge
conflict when #19034 changes the method signature of `SetConsulTokens`. Because
CI doesn't rebase, both PRs tested fine and only were broken once they landed on
`main`. Fix that.
The allocrunner has a service registration handler that proxies various API
calls to Consul. With multi-cluster support (for ENT), the service registration
handler is what selects the correct Consul client. The name of this field in the
allocrunner and taskrunner code base looks like it's referring to the actual
Consul API client. This was actually the case before Nomad native service
discovery was implemented, but now the name is misleading.
Remove the now-unused original configuration blocks for Consul and Vault from
the client. When the client needs to refer to a Consul or Vault block it will
always be for a specific cluster for the task/service. Add a helper for
accessing the default clusters (for the client's own use).
This is two of three changesets for this work. The remainder will implement the
same changes in the `command/agent` package.
As part of this work I discovered and fixed two bugs:
* The gRPC proxy socket that we create for Envoy is only ever created using the
default Consul cluster's configuration. This will prevent Connect from being
used with the non-default cluster.
* The Consul configuration we use for templates always comes from the default
Consul cluster's configuration, but will use the correct Consul token for the
non-default cluster. This will prevent templates from being used with the
non-default cluster.
Ref: https://github.com/hashicorp/nomad/issues/18947
Ref: https://github.com/hashicorp/nomad/pull/18991
Fixes: https://github.com/hashicorp/nomad/issues/18984
Fixes: https://github.com/hashicorp/nomad/issues/18983
In Nomad Enterprise, a task may connect to a non-default Vault cluster,
requiring `consul-template` to be configured with a specific client
`vault` block.
When clients are restarted and the identity hook runs when we restore
allocations, the running allocations are likely to have already-signed Workload
Identities that are unexpired. Save these to the client's local state DB so that
we can avoid a thundering herd of RPCs during client restart. When we restore,
we'll check if there's at least one expired signed WI before making any initial
signing request.
Included:
* Renames `getIdentities` to `getInitialIdentities` to make the workflow more clear.
* Renames the existing `widmgr_test.go` file of integration tests, which is in its
own package to avoid circular imports to `widmgr_int_test.go`
The `sids_hook` runs for Connect sidecar/gateway tasks and gets Consul Service
Identity (SI) tokens for use by the Envoy bootstrap hook. When Workload Identity
is being used with Consul, the `consul_hook` will have already added these
tokens to the alloc hook resources. Update the `sids_hook` to use those tokens
instead and write them to the expected area of the taskdir.
* vault: update identity name to start with `vault_`
In the original proposal, workload identities used to derive Vault
tokens were expected to be called just `vault`. But in order to support
multiple Vault clusters it is necessary to associate identities with
specific Vault cluster configuration.
This commit implements a new proposal to have Vault identities named as
`vault_<cluster>`.
This commit splits identity_hook between the allocrunner and taskrunner. The
allocrunner-level part of the hook signs each task identity, and the
taskrunner-level part picks it up and stores secrets for each task.
The code revamps the WIDMgr, which is now split into 2 interfaces:
IdentityManager which manages renewals of signatures and handles sending
updates to subscribers via Watch method, and IdentitySigner which only does the
signing.
This work is necessary for having a unified Consul login workflow that comes
with the new Consul integration. A new, allocrunner-level consul_hook will now
be the only hook doing Consul authentication.
Nomad Enterprise will support configuring multiple Vault clients. Instead of
having a single Vault client field in the Nomad client, we'll have a function
that callers can parameterize by the Vault cluster name that returns the
correctly configured Vault API client wrapper.
* drivers: plumb hardware topology via grpc into drivers
This PR swaps out the temporary use of detecting system hardware manually
in each driver for using the Client's detected topology by plumbing the
data over gRPC. This ensures that Client configuration is taken to account
consistently in all references to system topology.
* cr: use enum instead of bool for core grade
* cr: fix test slit tables to be possible
* client: refactor cpuset partitioning
This PR updates the way Nomad client manages the split between tasks
that make use of resources.cpus vs. resources.cores.
Previously, each task was explicitly assigned which CPU cores they were
able to run on. Every time a task was started or destroyed, all other
tasks' cpusets would need to be updated. This was inefficient and would
crush the Linux kernel when a client would try to run ~400 or so tasks.
Now, we make use of cgroup heirarchy and cpuset inheritence to efficiently
manage cpusets.
* cr: tweaks for feedback
Allows for multiple `identity{}` blocks for tasks along with user-specified audiences. This is a building block to allow workload identities to be used with Consul, Vault and 3rd party JWT based auth methods.
Expiration is still unimplemented and is necessary for JWTs to be used securely, so that's up next.
---------
Co-authored-by: Tim Gross <tgross@hashicorp.com>
This complements the `env` parameter, so that the operator can author
tasks that don't share their Vault token with the workload when using
`image` filesystem isolation. As a result, more powerful tokens can be used
in a job definition, allowing it to use template stanzas to issue all kinds of
secrets (database secrets, Vault tokens with very specific policies, etc.),
without sharing that issuing power with the task itself.
This is accomplished by creating a directory called `private` within
the task's working directory, which shares many properties of
the `secrets` directory (tmpfs where possible, not accessible by
`nomad alloc fs` or Nomad's web UI), but isn't mounted into/bound to the
container.
If the `disable_file` parameter is set to `false` (its default), the Vault token
is also written to the NOMAD_SECRETS_DIR, so the default behavior is
backwards compatible. Even if the operator never changes the default,
they will still benefit from the improved behavior of Nomad never reading
the token back in from that - potentially altered - location.
to avoid leaking task resources (e.g. containers,
iptables) if allocRunner prerun fails during
restore on client restart.
now if prerun fails, TaskRunner.MarkFailedKill()
will only emit an event, mark the task as failed,
and cancel the tr's killCtx, so then ar.runTasks()
-> tr.Run() can take care of the actual cleanup.
removed from (formerly) tr.MarkFailedDead(),
now handled by tr.Run():
* set task state as dead
* save task runner local state
* task stop hooks
also done in tr.Run() now that it's not skipped:
* handleKill() to kill tasks while respecting
their shutdown delay, and retrying as needed
* also includes task preKill hooks
* clearDriverHandle() to destroy the task
and associated resources
* task exited hooks
* Update ioutil deprecated library references to os and io respectively
* Deal with the errors produced.
Add error handling to filEntry info
Add error handling to info
Add `identity` jobspec block to expose workload identity tokens to tasks.
---------
Co-authored-by: Anders <mail@anars.dk>
Co-authored-by: Tim Gross <tgross@hashicorp.com>
Co-authored-by: Michael Schurter <mschurter@hashicorp.com>
* client: sandbox go-getter subprocess with landlock
This PR re-implements the getter package for artifact downloads as a subprocess.
Key changes include
On all platforms, run getter as a child process of the Nomad agent.
On Linux platforms running as root, run the child process as the nobody user.
On supporting Linux kernels, uses landlock for filesystem isolation (via go-landlock).
On all platforms, restrict environment variables of the child process to a static set.
notably TMP/TEMP now points within the allocation's task directory
kernel.landlock attribute is fingerprinted (version number or unavailable)
These changes make Nomad client more resilient against a faulty go-getter implementation that may panic, and more secure against bad actors attempting to use artifact downloads as a privilege escalation vector.
Adds new e2e/artifact suite for ensuring artifact downloading works.
TODO: Windows git test (need to modify the image, etc... followup PR)
* landlock: fixup items from cr
* cr: fixup tests and go.mod file
* allocrunner: handle lifecycle when all tasks die
When all tasks die the Coordinator must transition to its terminal
state, coordinatorStatePoststop, to unblock poststop tasks. Since this
could happen at any time (for example, a prestart task dies), all states
must be able to transition to this terminal state.
* allocrunner: implement different alloc restarts
Add a new alloc restart mode where all tasks are restarted, even if they
have already exited. Also unifies the alloc restart logic to use the
implementation that restarts tasks concurrently and ignores
ErrTaskNotRunning errors since those are expected when restarting the
allocation.
* allocrunner: allow tasks to run again
Prevent the task runner Run() method from exiting to allow a dead task
to run again. When the task runner is signaled to restart, the function
will jump back to the MAIN loop and run it again.
The task runner determines if a task needs to run again based on two new
task events that were added to differentiate between a request to
restart a specific task, the tasks that are currently running, or all
tasks that have already run.
* api/cli: add support for all tasks alloc restart
Implement the new -all-tasks alloc restart CLI flag and its API
counterpar, AllTasks. The client endpoint calls the appropriate restart
method from the allocrunner depending on the restart parameters used.
* test: fix tasklifecycle Coordinator test
* allocrunner: kill taskrunners if all tasks are dead
When all non-poststop tasks are dead we need to kill the taskrunners so
we don't leak their goroutines, which are blocked in the alloc restart
loop. This also ensures the allocrunner exits on its own.
* taskrunner: fix tests that waited on WaitCh
Now that "dead" tasks may run again, the taskrunner Run() method will
not return when the task finishes running, so tests must wait for the
task state to be "dead" instead of using the WaitCh, since it won't be
closed until the taskrunner is killed.
* tests: add tests for all tasks alloc restart
* changelog: add entry for #14127
* taskrunner: fix restore logic.
The first implementation of the task runner restore process relied on
server data (`tr.Alloc().TerminalStatus()`) which may not be available
to the client at the time of restore.
It also had the incorrect code path. When restoring a dead task the
driver handle always needs to be clear cleanly using `clearDriverHandle`
otherwise, after exiting the MAIN loop, the task may be killed by
`tr.handleKill`.
The fix is to store the state of the Run() loop in the task runner local
client state: if the task runner ever exits this loop cleanly (not with
a shutdown) it will never be able to run again. So if the Run() loops
starts with this local state flag set, it must exit early.
This local state flag is also being checked on task restart requests. If
the task is "dead" and its Run() loop is not active it will never be
able to run again.
* address code review requests
* apply more code review changes
* taskrunner: add different Restart modes
Using the task event to differentiate between the allocrunner restart
methods proved to be confusing for developers to understand how it all
worked.
So instead of relying on the event type, this commit separated the logic
of restarting an taskRunner into two methods:
- `Restart` will retain the current behaviour and only will only restart
the task if it's currently running.
- `ForceRestart` is the new method where a `dead` task is allowed to
restart if its `Run()` method is still active. Callers will need to
restart the allocRunner taskCoordinator to make sure it will allow the
task to run again.
* minor fixes
The current implementation for the task coordinator unblocks tasks by
performing destructive operations over its internal state (like closing
channels and deleting maps from keys).
This presents a problem in situations where we would like to revert the
state of a task, such as when restarting an allocation with tasks that
have already exited.
With this new implementation the task coordinator behaves more like a
finite state machine where task may be blocked/unblocked multiple times
by performing a state transition.
This initial part of the work only refactors the task coordinator and
is functionally equivalent to the previous implementation. Future work
will build upon this to provide bug fixes and enhancements.
Fix numerous go-getter security issues:
- Add timeouts to http, git, and hg operations to prevent DoS
- Add size limit to http to prevent resource exhaustion
- Disable following symlinks in both artifacts and `job run`
- Stop performing initial HEAD request to avoid file corruption on
retries and DoS opportunities.
**Approach**
Since Nomad has no ability to differentiate a DoS-via-large-artifact vs
a legitimate workload, all of the new limits are configurable at the
client agent level.
The max size of HTTP downloads is also exposed as a node attribute so
that if some workloads have large artifacts they can specify a high
limit in their jobspecs.
In the future all of this plumbing could be extended to enable/disable
specific getters or artifact downloading entirely on a per-node basis.
Closes#12927Closes#12958
This PR updates the version of redis used in our examples from 3.2 to 7.
The old version is very not supported anymore, and we should be setting
a good example by using a supported version.
The long-form example job is now fixed so that the service stanza uses
nomad as the service discovery provider, and so now the job runs without
a requirement of having Consul running and configured.
This PR modifies raw_exec and exec to ensure the cgroup for a task
they are driving still exists during a task restart. These drivers
have the same bug but with different root cause.
For raw_exec, we were removing the cgroup in 2 places - the cpuset
manager, and in the unix containment implementation (the thing that
uses freezer cgroup to clean house). During a task restart, the
containment would remove the cgroup, and when the task runner hooks
went to start again would block on waiting for the cgroup to exist,
which will never happen, because it gets created by the cpuset manager
which only runs as an alloc pre-start hook. The fix here is to simply
not delete the cgroup in the containment implementation; killing the
PIDs is enough. The removal happens in the cpuset manager later anyway.
For exec, it's the same idea, except DestroyTask is called on task
failure, which in turn calls into libcontainer, which in turn deletes
the cgroup. In this case we do not have control over the deletion of
the cgroup, so instead we hack the cgroup back into life after the
call to DestroyTask.
All of this only applies to cgroups v2.