In #26169 we started emitting structured logs from the reconciler. But the node
reconciler results are `AllocTuple` structs and not counts, so the information
we put in the logs ends up being pointer addresses in hex. Fix this so that
we're recording the number of allocs in each bucket instead.
Fix another misleading log-line while we're here.
Ref: https://github.com/hashicorp/nomad/pull/26169
The `DesiredUpdates` struct that we send to the Read Eval API doesn't include
information about disconnect/reconnect and rescheduling. Annotate the
`DesiredUpdates` with this data, and adjust the `eval status` command to display
only those fields that have non-zero values in order to make the output width
manageable.
Ref: https://hashicorp.atlassian.net/browse/NMD-815
The output of the reconciler stage of scheduling is only visible via debug-level
logs, typically accessible only to the cluster admin. We can give job authors
better ability to understand what's happening to their jobs if we expose this
information to them in the `eval status` command.
Add the reconciler's desired updates to the evaluation struct so it can be
exposed in the API. This increases the size of evals by roughly 15% in the state
store, or a bit more when there are preemptions (but we expect this will be a
small minority of evals).
Ref: https://hashicorp.atlassian.net/browse/NMD-818
Fixes: https://github.com/hashicorp/nomad/issues/15564
This change isolates all the code that deals with node selection in the
scheduler into its own package called feasible.
---------
Co-authored-by: Tim Gross <tgross@hashicorp.com>
* Preserve core resources during inplace service alloc updates
When an alloc is running with the core resources specified, and the
alloc is able to be updated in place, the cores it is running on should
be preserved.
This fixes a bug where the allocation's task's core resources
(CPU.ReservedCores) would be recomputed each time the reconciler checked
that the allocation could continue to run on the given node. Under
circumstances where a different core on the node became available before
this check was made, the selection process could compute this new core
as the core to run on, regardless of core the allocation was already
running on. The check takes into account other allocations running on
the node with reserved cores, but cannot check itself.
When this would happen for multiple allocations being evaluated in a
single plan, the selection process would see the other cores being
previously reserved but be unaware of the one it ran on, resulting in
the same core being chosen over and over for each allocation that was
being checked, and updated in the state store (but not on the node).
Once those cores were chosen and committed for multiple allocs, the node
appears to be exhausted on the cores dimension, and it would prevent any
additional allocations from being started on the node.
The reconciler check/computation for allocations that are being updated
in place and have resources.cores defined is effectively a check that
the node has the available cores to run on, not a computation that
should be changed. The fix still performs the check, but once it is
successful any existing ReservedCores are preserved. Because any changes
to this resource is considered a "destructive change", this can be
confidently preserved during the inplace update.
* Adjust reservedCores scheduler test
* Add changelog entry
The group level fields stop_after_client_disconnect,
max_client_disconnect, and prevent_reschedule_on_lost were deprecated in
Nomad 1.8 and replaced by field in the disconnect block. This change
removes any logic related to those deprecated fields.
---------
Co-authored-by: Tim Gross <tgross@hashicorp.com>
Similarly to #6732 it removes checking affinity and spread for inplace update.
Both affinity and spread should be as soft preference for Nomad scheduler rather than strict constraint. Therefore modifying them should not trigger job reallocation.
Fixes#25070
Co-authored-by: Tim Gross <tgross@hashicorp.com>
a change to the network{cni{}} block means that
the user wants the network config to change,
and that only happens during initial alloc setup,
so we need to replace the alloc(s) to get
fresh network(s) to reconfigure from scratch.
e.g. a job plan diff like this
```
+/- Task Group: "g" (1 in-place update)
+ Network {
+ CNIConfig {
+ a: "ayy"
}
```
should instead be
```
+/- Task Group: "g" (1 create/destroy update)
+ Network {
+ CNIConfig {
+ a: "ayy"
}
```
On supported platforms, the secrets directory is a 1MiB tmpfs. But some tasks
need larger space for downloading large secrets. This is especially the case for
tasks using `templates`, which need extra room to write a temporary file to the
secrets directory that gets renamed to the old file atomically.
This changeset allows increasing the size of the tmpfs in the `resources`
block. Because this is a memory resource, we need to include it in the memory we
allocate for scheduling purposes. The task is already prevented from using more
memory in the tmpfs than the `resources.memory` field allows, but can bypass
that limit by writing to the tmpfs via `template` or `artifact` blocks.
Therefore, we need to account for the size of the tmpfs in the allocation
resources. Simply adding it to the memory needed when we create the allocation
allows it to be accounted for in all downstream consumers, and then we'll
subtract that amount from the memory resources just before configuring the task
driver.
For backwards compatibility, the default value of 1MiB is "free" and ignored by
the scheduler. Otherwise we'd be increasing the allocated resources for every
existing alloc, which could cause problems across upgrades. If a user explicitly
sets `resources.secrets = 1` it will no longer be free.
Fixes: https://github.com/hashicorp/nomad/issues/2481
Ref: https://hashicorp.atlassian.net/browse/NET-10070
Add support for Consul Enterprise admin partitions. We added fingerprinting in
https://github.com/hashicorp/nomad/pull/19485. This PR adds a `consul.partition`
field. The expectation is that most users will create a mapping of Nomad node
pool to Consul admin partition. But we'll also create an implicit constraint for
the fingerprinted value.
Fixes: https://github.com/hashicorp/nomad/issues/13139
* core: plumbing to support numa aware scheduling
* core: apply node resources compatibility upon fsm rstore
Handle the case where an upgraded server dequeus an evaluation before
a client triggers a new fingerprint - which would be needed to cause
the compatibility fix to run. By running the compat fix on restore the
server will immediately have the compatible pseudo topology to use.
* lint: learn how to spell pseudo
To support Workload Identity with Consul for templates, we want templates to be
able to use the WI created at the task scope (either implicitly or set by the
user). But to allow different tasks within a group to be assigned to different
clusters as we're doing for Vault, we need to be able to set the `consul` block
with its `cluster` field at the task level to override the group.
Allows for multiple `identity{}` blocks for tasks along with user-specified audiences. This is a building block to allow workload identities to be used with Consul, Vault and 3rd party JWT based auth methods.
Expiration is still unimplemented and is necessary for JWTs to be used securely, so that's up next.
---------
Co-authored-by: Tim Gross <tgross@hashicorp.com>
In #18054 we introduced a new field `render_templates` in the `restart`
block. Previously changes to the `restart` block were always non-destructive in
the scheduler but we now need to check the new field so that we can update the
template runner. The check assumed that the block was always non-nil, which
causes panics in our scheduler tests.
This feature is necessary when user want to explicitly re-render all templates on task restart.
E.g. to fetch all new secrets from Vault, even if the lease on the existing secrets has not been expired.
Implement scheduler support for node pool:
* When a scheduler is invoked, we get a set of the ready nodes in the DCs that
are allowed for that job. Extend the filter to include the node pool.
* Ensure that changes to a job's node pool are picked up as destructive
allocation updates.
* Add `NodesInPool` as a metric to all reporting done by the scheduler.
* Add the node-in-pool the filter to the `Node.Register` RPC so that we don't
generate spurious evals for nodes in the wrong pool.
When the server restarts for the upgrade, it loads the `structs.Job` from the
Raft snapshot/logs. The jobspec has long since been parsed, so none of the
guards around the default value are in play. The empty field value for `Enabled`
is the zero value, which is false.
This doesn't impact any running allocation because we don't replace running
allocations when either the client or server restart. But as soon as any
allocation gets rescheduled (ex. you drain all your clients during upgrades),
it'll be using the `structs.Job` that the server has, which has `Enabled =
false`, and logs will not be collected.
This changeset fixes the bug by adding a new field `Disabled` which defaults to
false (so that the zero value works), and deprecates the old field.
Fixes#17076
Some Nomad users ship application logs out-of-band via syslog. For these users
having `logmon` (and `docker_logger`) running is unnecessary overhead. Allow
disabling the logmon and pointing the task's stdout/stderr to /dev/null.
This changeset is the first of several incremental improvements to log
collection short of full-on logging plugins. The next step will likely be to
extend the internal-only task driver configuration so that cluster
administrators can turn off log collection for the entire driver.
---
Fixes: #11175
Co-authored-by: Thomas Weber <towe75@googlemail.com>
Wildcard datacenters introduced a bug where a job with any wildcard datacenters
will always be treated as a destructive update when we check whether a
datacenter has been removed from the jobspec.
Includes updating the helper so that callers don't have to loop over the job's
datacenters.
Many of the functions in the `utils.go` file are specific to a particular
scheduler, and very few of them have guards (or even names) that help avoid
misuse with features specific to a given scheduler type. Move these
functions (and their tests) into files specific to their scheduler type without
any functionality changes to make it clear which bits go with what.
Add `identity` jobspec block to expose workload identity tokens to tasks.
---------
Co-authored-by: Anders <mail@anars.dk>
Co-authored-by: Tim Gross <tgross@hashicorp.com>
Co-authored-by: Michael Schurter <mschurter@hashicorp.com>
* scheduler: allow updates after alloc reconnects
When an allocation reconnects to a cluster the scheduler needs to run
special logic to handle the reconnection, check if a replacement was
create and stop one of them.
If the allocation kept running while the node was disconnected, it will
be reconnected with `ClientStatus: running` and the node will have
`Status: ready`. This combination is the same as the normal steady state
of allocation, where everything is running as expected.
In order to differentiate between the two states (an allocation that is
reconnecting and one that is just running) the scheduler needs an extra
piece of state.
The current implementation uses the presence of a
`TaskClientReconnected` task event to detect when the allocation has
reconnected and thus must go through the reconnection process. But this
event remains even after the allocation is reconnected, causing all
future evals to consider the allocation as still reconnecting.
This commit changes the reconnect logic to use an `AllocState` to
register when the allocation was reconnected. This provides the
following benefits:
- Only a limited number of task states are kept, and they are used for
many other events. It's possible that, upon reconnecting, several
actions are triggered that could cause the `TaskClientReconnected`
event to be dropped.
- Task events are set by clients and so their timestamps are subject
to time skew from servers. This prevents using time to determine if
an allocation reconnected after a disconnect event.
- Disconnect events are already stored as `AllocState` and so storing
reconnects there as well makes it the only source of information
required.
With the new logic, the reconnection logic is only triggered if the
last `AllocState` is a disconnect event, meaning that the allocation has
not been reconnected yet. After the reconnection is handled, the new
`ClientStatus` is store in `AllocState` allowing future evals to skip
the reconnection logic.
* scheduler: prevent spurious placement on reconnect
When a client reconnects it makes two independent RPC calls:
- `Node.UpdateStatus` to heartbeat and set its status as `ready`.
- `Node.UpdateAlloc` to update the status of its allocations.
These two calls can happen in any order, and in case the allocations are
updated before a heartbeat it causes the state to be the same as a node
being disconnected: the node status will still be `disconnected` while
the allocation `ClientStatus` is set to `running`.
The current implementation did not handle this order of events properly,
and the scheduler would create an unnecessary placement since it
considered the allocation was being disconnected. This extra allocation
would then be quickly stopped by the heartbeat eval.
This commit adds a new code path to handle this order of events. If the
node is `disconnected` and the allocation `ClientStatus` is `running`
the scheduler will check if the allocation is actually reconnecting
using its `AllocState` events.
* rpc: only allow alloc updates from `ready` nodes
Clients interact with servers using three main RPC methods:
- `Node.GetAllocs` reads allocation data from the server and writes it
to the client.
- `Node.UpdateAlloc` reads allocation from from the client and writes
them to the server.
- `Node.UpdateStatus` writes the client status to the server and is
used as the heartbeat mechanism.
These three methods are called periodically by the clients and are done
so independently from each other, meaning that there can't be any
assumptions in their ordering.
This can generate scenarios that are hard to reason about and to code
for. For example, when a client misses too many heartbeats it will be
considered `down` or `disconnected` and the allocations it was running
are set to `lost` or `unknown`.
When connectivity is restored the to rest of the cluster, the natural
mental model is to think that the client will heartbeat first and then
update its allocations status into the servers.
But since there's no inherit order in these calls the reverse is just as
possible: the client updates the alloc status and then heartbeats. This
results in a state where allocs are, for example, `running` while the
client is still `disconnected`.
This commit adds a new verification to the `Node.UpdateAlloc` method to
reject updates from nodes that are not `ready`, forcing clients to
heartbeat first. Since this check is done server-side there is no need
to coordinate operations client-side: they can continue sending these
requests independently and alloc update will succeed after the heartbeat
is done.
* chagelog: add entry for #15068
* code review
* client: skip terminal allocations on reconnect
When the client reconnects with the server it synchronizes the state of
its allocations by sending data using the `Node.UpdateAlloc` RPC and
fetching data using the `Node.GetClientAllocs` RPC.
If the data fetch happens before the data write, `unknown` allocations
will still be in this state and would trigger the
`allocRunner.Reconnect` flow.
But when the server `DesiredStatus` for the allocation is `stop` the
client should not reconnect the allocation.
* apply more code review changes
* scheduler: persist changes to reconnected allocs
Reconnected allocs have a new AllocState entry that must be persisted by
the plan applier.
* rpc: read node ID from allocs in UpdateAlloc
The AllocUpdateRequest struct is used in three disjoint use cases:
1. Stripped allocs from clients Node.UpdateAlloc RPC using the Allocs,
and WriteRequest fields
2. Raft log message using the Allocs, Evals, and WriteRequest fields
3. Plan updates using the AllocsStopped, AllocsUpdated, and Job fields
Adding a new field that would only be used in one these cases (1) made
things more confusing and error prone. While in theory an
AllocUpdateRequest could send allocations from different nodes, in
practice this never actually happens since only clients call this method
with their own allocations.
* scheduler: remove logic to handle exceptional case
This condition could only be hit if, somehow, the allocation status was
set to "running" while the client was "unknown". This was addressed by
enforcing an order in "Node.UpdateStatus" and "Node.UpdateAlloc" RPC
calls, so this scenario is not expected to happen.
Adding unnecessary code to the scheduler makes it harder to read and
reason about it.
* more code review
* remove another unused test
* cleanup: refactor MapStringStringSliceValueSet to be cleaner
* cleanup: replace SliceStringToSet with actual set
* cleanup: replace SliceStringSubset with real set
* cleanup: replace SliceStringContains with slices.Contains
* cleanup: remove unused function SliceStringHasPrefix
* cleanup: fixup StringHasPrefixInSlice doc string
* cleanup: refactor SliceSetDisjoint to use real set
* cleanup: replace CompareSliceSetString with SliceSetEq
* cleanup: replace CompareMapStringString with maps.Equal
* cleanup: replace CopyMapStringString with CopyMap
* cleanup: replace CopyMapStringInterface with CopyMap
* cleanup: fixup more CopyMapStringString and CopyMapStringInt
* cleanup: replace CopySliceString with slices.Clone
* cleanup: remove unused CopySliceInt
* cleanup: refactor CopyMapStringSliceString to be generic as CopyMapOfSlice
* cleanup: replace CopyMap with maps.Clone
* cleanup: run go mod tidy
Processing an evaluation is nearly a pure function over the state
snapshot, but we randomly shuffle the nodes. This means that
developers can't take a given state snapshot and pass an evaluation
through it and be guaranteed the same plan results.
But the evaluation ID is already random, so if we use this as the seed
for shuffling the nodes we can greatly reduce the sources of
non-determinism. Unfortunately golang map iteration uses a global
source of randomness and not a goroutine-local one, but arguably
if the scheduler behavior is impacted by this, that's a bug in the
iteration.
The system scheduler should leave allocs on draining nodes as-is, but
stop node stop allocs on nodes that are no longer part of the job
datacenters.
Previously, the scheduler did not make the distinction and left system
job allocs intact if they are already running.
I've added a failing test first, which you can see in https://app.circleci.com/jobs/github/hashicorp/nomad/179661 .
Fixes https://github.com/hashicorp/nomad/issues/11373
Add a new hostname string parameter to the network block which
allows operators to specify the hostname of the network namespace.
Changing this causes a destructive update to the allocation and it
is omitted if empty from API responses. This parameter also supports
interpolation.
In order to have a hostname passed as a configuration param when
creating an allocation network, the CreateNetwork func of the
DriverNetworkManager interface needs to be updated. In order to
minimize the disruption of future changes, rather than add another
string func arg, the function now accepts a request struct along with
the allocID param. The struct has the hostname as a field.
The in-tree implementations of DriverNetworkManager.CreateNetwork
have been modified to account for the function signature change.
In updating for the change, the enhancement of adding hostnames to
network namespaces has also been added to the Docker driver, whilst
the default Linux manager does not current implement it.
This PR implements a new "System Batch" scheduler type. Jobs can
make use of this new scheduler by setting their type to 'sysbatch'.
Like the name implies, sysbatch can be thought of as a hybrid between
system and batch jobs - it is for running short lived jobs intended to
run on every compatible node in the cluster.
As with batch jobs, sysbatch jobs can also be periodic and/or parameterized
dispatch jobs. A sysbatch job is considered complete when it has been run
on all compatible nodes until reaching a terminal state (success or failed
on retries).
Feasibility and preemption are governed the same as with system jobs. In
this PR, the update stanza is not yet supported. The update stanza is sill
limited in functionality for the underlying system scheduler, and is
not useful yet for sysbatch jobs. Further work in #4740 will improve
support for the update stanza and deployments.
Closes#2527
Updates to the datacenter field should be destructive for any allocation that
is on a node no longer in the list of datacenters, but inplace for any
allocation on a node that is still in the list. Add a check for this change to
the system and generic schedulers after we've checked the task definition for
updates and obtained the node for each current allocation.
This PR adds the common OSS changes for adding support for Consul Namespaces,
which is going to be a Nomad Enterprise feature. There is no new functionality
provided by this changeset and hopefully no new bugs.
Start tracking a new MemoryMaxMB field that represents the maximum memory a task
may use in the client. This allows tasks to specify a memory reservation (to be
used by scheduler when placing the task) but use excess memory used on the
client if the client has any.
This commit adds the server tracking for the value, and ensures that allocations
AllocatedResource fields include the value.