On Windows the executor returns an error when trying to open the `NUL` device
when we pass it `os.DevNull` for the stdout/stderr paths. Instead of opening the
device, use the discard pipe so that we have platform-specific behavior from the
executor itself.
Fixes: #17148
* Update ioutil library references to os and io respectively for drivers package
No user facing changes so I assume no change log is required
* Fix failing tests
This PR adds support for the raw_exec driver on systems with only cgroups v2.
The raw exec driver is able to use cgroups to manage processes. This happens
only on Linux, when exec_driver is enabled, and the no_cgroups option is not
set. The driver uses the freezer controller to freeze processes of a task,
issue a sigkill, then unfreeze. Previously the implementation assumed cgroups
v1, and now it also supports cgroups v2.
There is a bit of refactoring in this PR, but the fundamental design remains
the same.
Closes#12351#12348
This PR introduces support for using Nomad on systems with cgroups v2 [1]
enabled as the cgroups controller mounted on /sys/fs/cgroups. Newer Linux
distros like Ubuntu 21.10 are shipping with cgroups v2 only, causing problems
for Nomad users.
Nomad mostly "just works" with cgroups v2 due to the indirection via libcontainer,
but not so for managing cpuset cgroups. Before, Nomad has been making use of
a feature in v1 where a PID could be a member of more than one cgroup. In v2
this is no longer possible, and so the logic around computing cpuset values
must be modified. When Nomad detects v2, it manages cpuset values in-process,
rather than making use of cgroup heirarchy inheritence via shared/reserved
parents.
Nomad will only activate the v2 logic when it detects cgroups2 is mounted at
/sys/fs/cgroups. This means on systems running in hybrid mode with cgroups2
mounted at /sys/fs/cgroups/unified (as is typical) Nomad will continue to
use the v1 logic, and should operate as before. Systems that do not support
cgroups v2 are also not affected.
When v2 is activated, Nomad will create a parent called nomad.slice (unless
otherwise configured in Client conifg), and create cgroups for tasks using
naming convention <allocID>-<task>.scope. These follow the naming convention
set by systemd and also used by Docker when cgroups v2 is detected.
Client nodes now export a new fingerprint attribute, unique.cgroups.version
which will be set to 'v1' or 'v2' to indicate the cgroups regime in use by
Nomad.
The new cpuset management strategy fixes#11705, where docker tasks that
spawned processes on startup would "leak". In cgroups v2, the PIDs are
started in the cgroup they will always live in, and thus the cause of
the leak is eliminated.
[1] https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.htmlCloses#11289Fixes#11705#11773#11933
github.com/kr/pty was moved to github.com/creack/pty
Swap this dependency so we can upgrade to the latest version
and no longer need a replace directive.
This PR enables setting allow_caps on the exec driver
plugin configuration, as well as cap_add and cap_drop in
exec task configuration. These options replicate the
functionality already present in the docker task driver.
Important: this change also reduces the default set of
capabilities enabled by the exec driver to match the
default set enabled by the docker driver. Until v1.0.5
the exec task driver would enable all capabilities supported
by the operating system. v1.0.5 removed NET_RAW from that
list of default capabilities, but left may others which
could potentially also be leveraged by compromised tasks.
Important: the "root" user is still special cased when
used with the exec driver. Older versions of Nomad enabled
enabled all capabilities supported by the operating system
for tasks set with the root user. To maintain compatibility
with existing clusters we continue supporting this "feature",
however we maintain support for the legacy set of capabilities
rather than enabling all capabilities now supported on modern
operating systems.
The default Linux Capabilities set enabled by the docker, exec, and
java task drivers includes CAP_NET_RAW (for making ping just work),
which has the side affect of opening an ARP DoS/MiTM attack between
tasks using bridge networking on the same host network.
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
This PR disables CAP_NET_RAW for the docker, exec, and java task
drivers. The previous behavior can be restored for docker using the
allow_caps docker plugin configuration option.
A future version of nomad will enable similar configurability for the
exec and java task drivers.
This PR adds pid_mode and ipc_mode options to the exec and java task
driver config options. By default these will defer to the default_pid_mode
and default_ipc_mode agent plugin options created in #9969. Setting
these values to "host" mode disables isolation for the task. Doing so
is not recommended, but may be necessary to support legacy job configurations.
Closes#9970
This PR adds default_pid_mode and default_ipc_mode options to the exec and java
task drivers. By default these will default to "private" mode, enabling PID and
IPC isolation for tasks. Setting them to "host" mode disables isolation. Doing
so is not recommended, but may be necessary to support legacy job configurations.
Closes#9969
Fix#9210 .
This update the executor so it honors the User when using nomad alloc exec. The bug was that the exec task didn't honor the init command when execing.
When raw_exec is configured with [`no_cgroups`](https://www.nomadproject.io/docs/drivers/raw_exec#no_cgroups), raw_exec shouldn't attempt to create a cgroup.
Prior to this change, we accidentally always required freezer cgroup to do stats PID tracking. We already have the proper fallback in place for metrics, so only need to ensure that we don't create a cgroup for the task.
Fixes https://github.com/hashicorp/nomad/issues/8565
Implements streamign exec handling in both executors (i.e. universal and
libcontainer).
For creation of TTY, some incidental complexity leaked in. The universal
executor uses github.com/kr/pty for creation of TTYs.
On the other hand, libcontainer expects a console socket and for libcontainer to
create the underlying console object on process start. The caller can then use
`libcontainer.utils.RecvFd()` to get tty master end.
I chose github.com/kr/pty for managing TTYs here. I tried
`github.com/containerd/console` package (which is already imported), but the
package did not work as expected on macOS.
Reverts hashicorp/nomad#5433
Apparently, channel communications can constitute Happens-Before even for proximate variables, so this syncing isn't necessary.
> _The closing of a channel happens before a receive that returns a zero value because the channel is closed._
https://golang.org/ref/mem#tmp_7
plugins/driver: update driver interface to support streaming stats
client/tr: use streaming stats api
TODO:
* how to handle errors and closed channel during stats streaming
* prevent tight loop if Stats(ctx) returns an error
drivers: update drivers TaskStats RPC to handle streaming results
executor: better error handling in stats rpc
docker: better control and error handling of stats rpc
driver: allow stats to return a recoverable error
This PR fixes various instances of plugins being launched without using
the parent loggers. This meant that logs would not all go to the same
output, break formatting etc.
Re-export the ResourceUsage structs in drivers package to avoid drivers
directly depending on the internal client/structs package directly.
I attempted moving the structs to drivers, but that caused some import
cycles that was a bit hard to disentagle. Alternatively, I added an
alias here that's sufficient for our purposes of avoiding external
drivers depend on internal packages, while allowing us to restructure
packages in future without breaking source compatibility.
* master: (71 commits)
Fix output of 'nomad deployment fail' with no arg
Always create a running allocation when testing task state
tests: ensure exec tests pass valid task resources (#4992)
some changes for more idiomatic code
fix iops related tests
fixed bug in loop delay
gofmt
improved code for readability
client: updateAlloc release lock after read
fixup! device attributes in `nomad node status -verbose`
drivers/exec: support device binds and mounts
fix iops bug and increase test matrix coverage
tests: tag image explicitly
changelog
ci: install lxc-templates explicitly
tests: skip checking rdma cgroup
ci: use Ubuntu 16.04 (Xenial) in TravisCI
client: update driver info on new fingerprint
drivers/docker: enforce volumes.enabled (#4983)
client: Style: use fluent style for building loggers
...
IOPS have been modelled as a resource since Nomad 0.1 but has never
actually been detected and there is no plan in the short term to add
detection. This is because IOPS is a bit simplistic of a unit to define
the performance requirements from the underlying storage system. In its
current state it adds unnecessary confusion and can be removed without
impacting any users. This PR leaves IOPS defined at the jobspec parsing
level and in the api/ resources since these are the two public uses of
the field. These should be considered deprecated and only exist to allow
users to stop using them during the Nomad 0.9.x release. In the future,
there should be no expectation that the field will exist.