In Nomad 1.5.3 we fixed a security bug that allowed bypass of ACL checks if the
request came thru a client node first. But this fix broke (knowingly) the
identification of many client-to-server RPCs. These will be now measured as if
they were anonymous. The reason for this is that many client-to-server RPCs do
not send the node secret and instead rely on the protection of mTLS.
This changeset ensures that the node secret is being sent with every
client-to-server RPC request. In a future version of Nomad we can add
enforcement on the server side, but this was left out of this changeset to
reduce risks to the safe upgrade path.
Sending the node secret as an auth token introduces a new problem during initial
introduction of a client. Clients send many RPCs concurrently with
`Node.Register`, but until the node is registered the node secret is unknown to
the server and will be rejected as invalid. This causes permission denied
errors.
To fix that, this changeset introduces a gate on having successfully made a
`Node.Register` RPC before any other RPCs can be sent (except for `Status.Ping`,
which we need earlier but which also ignores the error because that handler
doesn't do an authorization check). This ensures that we only send requests with
a node secret already known to the server. This also makes client startup a
little easier to reason about because we know `Node.Register` must succeed
first, and it should make for a good place to hook in future plans for secure
introduction of nodes. The tradeoff is that an existing client that has running
allocs will take slightly longer (a second or two) to transition to ready after
a restart, because the transition in `Node.UpdateStatus` is gated at the server
by first submitting `Node.UpdateAlloc` with client alloc updates.
* Upgrade from hashicorp/go-msgpack v1.1.5 to v2.1.0
Fixes#16808
* Update hashicorp/net-rpc-msgpackrpc to v2 to match go-msgpack
* deps: use go-msgpack v2.0.0
go-msgpack v2.1.0 includes some code changes that we will need to
investigate furthere to assess its impact on Nomad, so keeping this
dependency on v2.0.0 for now since it's no-op.
---------
Co-authored-by: Luiz Aoqui <luiz@hashicorp.com>
This PR adds support for specifying checks in services registered to
the built-in nomad service provider.
Currently only HTTP and TCP checks are supported, though more types
could be added later.
When serializing structs with msgpack, only consider type tags of
`codec`.
Hashicorp/go-msgpack (based on ugorji/go) defaults to interpretting
`codec` tag if it's available, but falls to using `json` if `codec`
isn't present.
This behavior is surprising in cases where we want to serialize json
differently from msgpack, e.g. serializing `ConsulExposeConfig`.
Use v1.1.5 of go-msgpack/codec/codecgen, so go-msgpack codecgen matches
the library version.
We branched off earlier to pick up
f51b518921
, but apparently that's not needed as we could customize the package via
`-c` argument.
Adds new package that can be used by client and server RPC endpoints to
facilitate monitoring based off of a logger
clean up old code
small comment about write
rm old comment about minsize
rename to Monitor
Removes connection logic from monitor command
Keep connection logic in endpoints, use a channel to send results from
monitoring
use new multisink logger and interfaces
small test for dropped messages
update go-hclogger and update sink/intercept logger interfaces
This is an attempt to ease dependency management for external driver
plugins, by avoiding requiring them to compile ugorji/go generated
files. Plugin developers reported some pain with the brittleness of
ugorji/go dependency in particular, specially when using go mod, the
default go mod manager in golang 1.13.
Context
--------
Nomad uses msgpack to persist and serialize internal structs, using
ugorji/go library. As an optimization, we use ugorji/go code generation
to speedup process and aovid the relection-based slow path.
We commit these generated files in repository when we cut and tag the
release to ease reproducability and debugging old releases. Thus,
downstream projects that depend on release tag, indirectly depends on
ugorji/go generated code.
Sadly, the generated code is brittle and specific to the version of
ugorji/go being used. When go mod picks another version of ugorji/go
then nomad (go mod by default uses release according to semver),
downstream projects face compilation errors.
Interestingly, downstream projects don't commonly serialize nomad
internal structs. Drivers and device plugins use grpc instead of
msgpack for the most part. In the few cases where they use msgpag (e.g.
decoding task config), they do without codegen path as they run on
driver specific structs not the nomad internal structs. Also, the
ugorji/go serialization through reflection is generally backward
compatible (mod some ugorji/go regression bugs that get introduced every
now and then :( ).
Proposal
---------
The proposal here is to keep committing ugorji/go codec generated files
for releases but to use a go tag for them.
All nomad development through the makefile, including releasing, CI and
dev flow, has the tag enabled.
Downstream plugin projects, by default, will skip these files and life
proceed as normal for them.
The downside is that nomad developers who use generated code but avoid
using make must start passing additional go tag argument. Though this
is not a blessed configuration.
Track current memory usage, `memory.usage_in_bytes`, in addition to
`memory.max_memory_usage_in_bytes` and friends. This number is closer
what Docker reports.
Related to https://github.com/hashicorp/nomad/issues/5165 .
This removes a cyclical dependency when importing client/structs from
dependencies of the plugin_loader, specifically, drivers. Due to
client/config also depending on the plugin_loader.
It also better reflects the ownership of fingerprint structs, as they
are fairly internal to the fingerprint manager.
This change makes few compromises:
* Looks up the devices associated with tasks at look up time. Given
that `nomad alloc status` is called rarely generally (compared to stats
telemetry and general job reporting), it seems fine. However, the
lookup overhead grows bounded by number of `tasks x total-host-devices`,
which can be significant.
* `client.Client` performs the task devices->statistics lookup. It
passes self to alloc/task runners so they can look up the device statistics
allocated to them.
* Currently alloc/task runners are responsible for constructing the
entire RPC response for stats
* The alternatives for making task runners device statistics aware
don't seem appealing (e.g. having task runners contain reference to hostStats)
* On the alloc aggregation resource usage, I did a naive merging of task device statistics.
* Personally, I question the value of such aggregation, compared to
costs of struct duplication and bloating the response - but opted to be
consistent in the API.
* With naive concatination, device instances from a single device group used by separate tasks in the alloc, would be aggregated in two separate device group statistics.