Files
nomad/nomad/eval_endpoint.go
Tim Gross 8267108085 provide RPCContext to all RPC handlers (#15430)
Upcoming work to instrument the rate of RPC requests by consumer (and eventually
rate limit) requires that we thread the `RPCContext` through all RPC
handlers so that we can access the underlying connection. This changeset adds
the context to everywhere we intend to initially support it and intentionally
excludes streaming RPCs and client RPCs.

To improve the ergonomics of adding the context everywhere its needed and to
clarify the requirements of dynamic vs static handlers, I've also done a good
bit of refactoring here:

* canonicalized the RPC handler fields so they're as close to identical as
  possible without introducing unused fields (i.e. I didn't add loggers if the
  handler doesn't use them already).
* canonicalized the imports in the handler files.
* added a `NewExampleEndpoint` function for each handler that ensures we're
  constructing the handlers with the required arguments.
* reordered the registration in server.go to match the order of the files (to
  make it easier to see if we've missed one), and added a bunch of commentary
  there as to what the difference between static and dynamic handlers is.
2022-12-01 10:05:15 -05:00

898 lines
25 KiB
Go

package nomad
import (
"errors"
"fmt"
"net/http"
"time"
"github.com/armon/go-metrics"
"github.com/hashicorp/go-bexpr"
"github.com/hashicorp/go-hclog"
"github.com/hashicorp/go-memdb"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/go-version"
"github.com/hashicorp/nomad/acl"
"github.com/hashicorp/nomad/nomad/state"
"github.com/hashicorp/nomad/nomad/state/paginator"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/hashicorp/nomad/scheduler"
)
const (
// DefaultDequeueTimeout is used if no dequeue timeout is provided
DefaultDequeueTimeout = time.Second
)
var minVersionEvalDeleteByFilter = version.Must(version.NewVersion("1.4.3"))
// Eval endpoint is used for eval interactions
type Eval struct {
srv *Server
ctx *RPCContext
logger hclog.Logger
}
func NewEvalEndpoint(srv *Server, ctx *RPCContext) *Eval {
return &Eval{srv: srv, ctx: ctx, logger: srv.logger.Named("eval")}
}
// GetEval is used to request information about a specific evaluation
func (e *Eval) GetEval(args *structs.EvalSpecificRequest,
reply *structs.SingleEvalResponse) error {
if done, err := e.srv.forward("Eval.GetEval", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "eval", "get_eval"}, time.Now())
// Check for read-job permissions before performing blocking query.
allowNsOp := acl.NamespaceValidator(acl.NamespaceCapabilityReadJob)
aclObj, err := e.srv.ResolveToken(args.AuthToken)
if err != nil {
return err
} else if !allowNsOp(aclObj, args.RequestNamespace()) {
return structs.ErrPermissionDenied
}
// Setup the blocking query
opts := blockingOptions{
queryOpts: &args.QueryOptions,
queryMeta: &reply.QueryMeta,
run: func(ws memdb.WatchSet, state *state.StateStore) error {
var related []*structs.EvaluationStub
// Look for the eval
eval, err := state.EvalByID(ws, args.EvalID)
if err != nil {
return fmt.Errorf("failed to lookup eval: %v", err)
}
if eval != nil {
// Re-check namespace in case it differs from request.
if !allowNsOp(aclObj, eval.Namespace) {
return structs.ErrPermissionDenied
}
// Lookup related evals if requested.
if args.IncludeRelated {
related, err = state.EvalsRelatedToID(ws, eval.ID)
if err != nil {
return fmt.Errorf("failed to lookup related evals: %v", err)
}
// Use a copy to avoid modifying the original eval.
eval = eval.Copy()
eval.RelatedEvals = related
}
}
// Setup the output.
reply.Eval = eval
if eval != nil {
reply.Index = eval.ModifyIndex
} else {
// Use the last index that affected the evals table
index, err := state.Index("evals")
if err != nil {
return err
}
reply.Index = index
}
// Set the query response
e.srv.setQueryMeta(&reply.QueryMeta)
return nil
}}
return e.srv.blockingRPC(&opts)
}
// Dequeue is used to dequeue a pending evaluation
func (e *Eval) Dequeue(args *structs.EvalDequeueRequest,
reply *structs.EvalDequeueResponse) error {
// Ensure the connection was initiated by another server if TLS is used.
err := validateTLSCertificateLevel(e.srv, e.ctx, tlsCertificateLevelServer)
if err != nil {
return err
}
if done, err := e.srv.forward("Eval.Dequeue", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "eval", "dequeue"}, time.Now())
// Ensure there is at least one scheduler
if len(args.Schedulers) == 0 {
return fmt.Errorf("dequeue requires at least one scheduler type")
}
// Check that there isn't a scheduler version mismatch
if args.SchedulerVersion != scheduler.SchedulerVersion {
return fmt.Errorf("dequeue disallowed: calling scheduler version is %d; leader version is %d",
args.SchedulerVersion, scheduler.SchedulerVersion)
}
// Ensure there is a default timeout
if args.Timeout <= 0 {
args.Timeout = DefaultDequeueTimeout
}
// If the eval broker is paused, attempt to block and wait for a state
// change before returning. This avoids a tight loop and mimics the
// behaviour where there are no evals to process.
//
// The call can return because either the timeout is reached or the broker
// SetEnabled function was called to modify its state. It is possible this
// is because of leadership transition, therefore the RPC should exit to
// allow all safety checks and RPC forwarding to occur again.
//
// The log line is trace, because the default worker timeout is 500ms which
// produces a large amount of logging.
if !e.srv.evalBroker.Enabled() {
message := e.srv.evalBroker.enabledNotifier.WaitForChange(args.Timeout)
e.logger.Trace("eval broker wait for un-pause", "message", message)
return nil
}
// Attempt the dequeue
eval, token, err := e.srv.evalBroker.Dequeue(args.Schedulers, args.Timeout)
if err != nil {
return err
}
// Provide the output if any
if eval != nil {
// Get the index that the worker should wait until before scheduling.
waitIndex, err := e.getWaitIndex(eval.Namespace, eval.JobID, eval.ModifyIndex)
if err != nil {
var mErr multierror.Error
_ = multierror.Append(&mErr, err)
// We have dequeued the evaluation but won't be returning it to the
// worker so Nack the eval.
if err := e.srv.evalBroker.Nack(eval.ID, token); err != nil {
_ = multierror.Append(&mErr, err)
}
return &mErr
}
reply.Eval = eval
reply.Token = token
reply.WaitIndex = waitIndex
}
// Set the query response
e.srv.setQueryMeta(&reply.QueryMeta)
return nil
}
// getWaitIndex returns the wait index that should be used by the worker before
// invoking the scheduler. The index should be the highest modify index of any
// evaluation for the job. This prevents scheduling races for the same job when
// there are blocked evaluations.
func (e *Eval) getWaitIndex(namespace, job string, evalModifyIndex uint64) (uint64, error) {
snap, err := e.srv.State().Snapshot()
if err != nil {
return 0, err
}
evals, err := snap.EvalsByJob(nil, namespace, job)
if err != nil {
return 0, err
}
// Since dequeueing evals is concurrent with applying Raft messages to
// the state store, initialize to the currently dequeued eval's index
// in case it isn't in the snapshot used by EvalsByJob yet.
max := evalModifyIndex
for _, eval := range evals {
if max < eval.ModifyIndex {
max = eval.ModifyIndex
}
}
return max, nil
}
// Ack is used to acknowledge completion of a dequeued evaluation
func (e *Eval) Ack(args *structs.EvalAckRequest,
reply *structs.GenericResponse) error {
// Ensure the connection was initiated by another server if TLS is used.
err := validateTLSCertificateLevel(e.srv, e.ctx, tlsCertificateLevelServer)
if err != nil {
return err
}
if done, err := e.srv.forward("Eval.Ack", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "eval", "ack"}, time.Now())
// Ack the EvalID
if err := e.srv.evalBroker.Ack(args.EvalID, args.Token); err != nil {
return err
}
// Wake up the eval cancelation reaper. This never blocks; if the buffer is
// full we know it's going to get picked up by the reaper so we don't need
// another send on that channel.
select {
case e.srv.reapCancelableEvalsCh <- struct{}{}:
default:
}
return nil
}
// Nack is used to negative acknowledge completion of a dequeued evaluation.
func (e *Eval) Nack(args *structs.EvalAckRequest,
reply *structs.GenericResponse) error {
// Ensure the connection was initiated by another server if TLS is used.
err := validateTLSCertificateLevel(e.srv, e.ctx, tlsCertificateLevelServer)
if err != nil {
return err
}
if done, err := e.srv.forward("Eval.Nack", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "eval", "nack"}, time.Now())
// Nack the EvalID
if err := e.srv.evalBroker.Nack(args.EvalID, args.Token); err != nil {
return err
}
return nil
}
// Update is used to perform an update of an Eval if it is outstanding.
func (e *Eval) Update(args *structs.EvalUpdateRequest,
reply *structs.GenericResponse) error {
// Ensure the connection was initiated by another server if TLS is used.
err := validateTLSCertificateLevel(e.srv, e.ctx, tlsCertificateLevelServer)
if err != nil {
return err
}
if done, err := e.srv.forward("Eval.Update", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "eval", "update"}, time.Now())
// Ensure there is only a single update with token
if len(args.Evals) != 1 {
return fmt.Errorf("only a single eval can be updated")
}
eval := args.Evals[0]
// Verify the evaluation is outstanding, and that the tokens match.
if err := e.srv.evalBroker.OutstandingReset(eval.ID, args.EvalToken); err != nil {
return err
}
// Update via Raft
_, index, err := e.srv.raftApply(structs.EvalUpdateRequestType, args)
if err != nil {
return err
}
// Update the index
reply.Index = index
return nil
}
// Create is used to make a new evaluation
func (e *Eval) Create(args *structs.EvalUpdateRequest,
reply *structs.GenericResponse) error {
// Ensure the connection was initiated by another server if TLS is used.
err := validateTLSCertificateLevel(e.srv, e.ctx, tlsCertificateLevelServer)
if err != nil {
return err
}
if done, err := e.srv.forward("Eval.Create", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "eval", "create"}, time.Now())
// Ensure there is only a single update with token
if len(args.Evals) != 1 {
return fmt.Errorf("only a single eval can be created")
}
eval := args.Evals[0]
// Verify the parent evaluation is outstanding, and that the tokens match.
if err := e.srv.evalBroker.OutstandingReset(eval.PreviousEval, args.EvalToken); err != nil {
return err
}
// Look for the eval
snap, err := e.srv.fsm.State().Snapshot()
if err != nil {
return err
}
ws := memdb.NewWatchSet()
out, err := snap.EvalByID(ws, eval.ID)
if err != nil {
return err
}
if out != nil {
return fmt.Errorf("evaluation already exists")
}
// Update via Raft
_, index, err := e.srv.raftApply(structs.EvalUpdateRequestType, args)
if err != nil {
return err
}
// Update the index
reply.Index = index
return nil
}
// Reblock is used to reinsert an existing blocked evaluation into the blocked
// evaluation tracker.
func (e *Eval) Reblock(args *structs.EvalUpdateRequest, reply *structs.GenericResponse) error {
// Ensure the connection was initiated by another server if TLS is used.
err := validateTLSCertificateLevel(e.srv, e.ctx, tlsCertificateLevelServer)
if err != nil {
return err
}
if done, err := e.srv.forward("Eval.Reblock", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "eval", "reblock"}, time.Now())
// Ensure there is only a single update with token
if len(args.Evals) != 1 {
return fmt.Errorf("only a single eval can be reblocked")
}
eval := args.Evals[0]
// Verify the evaluation is outstanding, and that the tokens match.
if err := e.srv.evalBroker.OutstandingReset(eval.ID, args.EvalToken); err != nil {
return err
}
// Look for the eval
snap, err := e.srv.fsm.State().Snapshot()
if err != nil {
return err
}
ws := memdb.NewWatchSet()
out, err := snap.EvalByID(ws, eval.ID)
if err != nil {
return err
}
if out == nil {
return fmt.Errorf("evaluation does not exist")
}
if out.Status != structs.EvalStatusBlocked {
return fmt.Errorf("evaluation not blocked")
}
// Reblock the eval
e.srv.blockedEvals.Reblock(eval, args.EvalToken)
return nil
}
// Reap is used to cleanup dead evaluations and allocations
func (e *Eval) Reap(args *structs.EvalReapRequest,
reply *structs.GenericResponse) error {
// Ensure the connection was initiated by another server if TLS is used.
err := validateTLSCertificateLevel(e.srv, e.ctx, tlsCertificateLevelServer)
if err != nil {
return err
}
if done, err := e.srv.forward("Eval.Reap", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "eval", "reap"}, time.Now())
// Update via Raft
_, index, err := e.srv.raftApply(structs.EvalDeleteRequestType, args)
if err != nil {
return err
}
// Update the index
reply.Index = index
return nil
}
// Delete is used by operators to delete evaluations during severe outages. It
// differs from Reap while duplicating some behavior to ensure we have the
// correct controls for user initiated deletions.
func (e *Eval) Delete(
args *structs.EvalDeleteRequest,
reply *structs.EvalDeleteResponse) error {
if done, err := e.srv.forward(structs.EvalDeleteRPCMethod, args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "eval", "delete"}, time.Now())
// This RPC endpoint is very destructive and alters Nomad's core state,
// meaning only those with management tokens can call it.
if aclObj, err := e.srv.ResolveToken(args.AuthToken); err != nil {
return err
} else if aclObj != nil && !aclObj.IsManagement() {
return structs.ErrPermissionDenied
}
if args.Filter != "" && !ServersMeetMinimumVersion(
e.srv.Members(), e.srv.Region(), minVersionEvalDeleteByFilter, true) {
return fmt.Errorf(
"all servers must be running version %v or later to delete evals by filter",
minVersionEvalDeleteByFilter)
}
if args.Filter != "" && len(args.EvalIDs) > 0 {
return fmt.Errorf("evals cannot be deleted by both ID and filter")
}
if args.Filter == "" && len(args.EvalIDs) == 0 {
return fmt.Errorf("evals must be deleted by either ID or filter")
}
// The eval broker must be disabled otherwise Nomad's state will likely get
// wild in a very un-fun way.
if e.srv.evalBroker.Enabled() {
return errors.New("eval broker is enabled; eval broker must be paused to delete evals")
}
if args.Filter != "" {
count, index, err := e.deleteEvalsByFilter(args)
if err != nil {
return err
}
// Update the index and return.
reply.Index = index
reply.Count = count
return nil
}
// Grab the state snapshot, so we can look up relevant eval information.
serverStateSnapshot, err := e.srv.State().Snapshot()
if err != nil {
return fmt.Errorf("failed to lookup state snapshot: %v", err)
}
ws := memdb.NewWatchSet()
count := 0
// Iterate the evaluations and ensure they are safe to delete. It is
// possible passed evals are not safe to delete and would make Nomads state
// a little wonky. The nature of the RPC return error, means a single
// unsafe eval ID fails the whole call.
for _, evalID := range args.EvalIDs {
evalInfo, err := serverStateSnapshot.EvalByID(ws, evalID)
if err != nil {
return fmt.Errorf("failed to lookup eval: %v", err)
}
if evalInfo == nil {
return errors.New("eval not found")
}
ok, err := serverStateSnapshot.EvalIsUserDeleteSafe(ws, evalInfo)
if err != nil {
return err
}
if !ok {
return fmt.Errorf("eval %s is not safe to delete", evalInfo.ID)
}
count++
}
// Generate the Raft request object using the reap request object. This
// avoids adding new Raft messages types and follows the existing reap
// flow.
raftReq := structs.EvalReapRequest{
Evals: args.EvalIDs,
UserInitiated: true,
WriteRequest: args.WriteRequest,
}
// Update via Raft.
_, index, err := e.srv.raftApply(structs.EvalDeleteRequestType, &raftReq)
if err != nil {
return err
}
// Update the index and return.
reply.Index = index
reply.Count = count
return nil
}
// deleteEvalsByFilter deletes evaluations in batches based on the filter. It
// returns a count, the index, and any error
func (e *Eval) deleteEvalsByFilter(args *structs.EvalDeleteRequest) (int, uint64, error) {
count := 0
index := uint64(0)
filter, err := bexpr.CreateEvaluator(args.Filter)
if err != nil {
return count, index, err
}
// Note that deleting evals by filter is imprecise: For sets of evals larger
// than a single batch eval inserts may occur behind the cursor and therefore
// be missed. This imprecision is not considered to hurt this endpoint's
// purpose of reducing pressure on servers during periods of heavy scheduling
// activity.
snap, err := e.srv.State().Snapshot()
if err != nil {
return count, index, fmt.Errorf("failed to lookup state snapshot: %v", err)
}
iter, err := snap.Evals(nil, state.SortDefault)
if err != nil {
return count, index, err
}
// We *can* send larger raft logs but rough benchmarks for deleting 1M evals
// show that a smaller page size strikes a balance between throughput and
// time we block the FSM apply for other operations
perPage := structs.MaxUUIDsPerWriteRequest / 10
raftReq := structs.EvalReapRequest{
Filter: args.Filter,
PerPage: int32(perPage),
UserInitiated: true,
WriteRequest: args.WriteRequest,
}
// Note: Paginator is designed around fetching a single page for a single
// RPC call and finalizes its state after that page. So we're doing our own
// pagination here.
pageCount := 0
lastToken := ""
for {
raw := iter.Next()
if raw == nil {
break
}
eval := raw.(*structs.Evaluation)
deleteOk, err := snap.EvalIsUserDeleteSafe(nil, eval)
if !deleteOk || err != nil {
continue
}
match, err := filter.Evaluate(eval)
if !match || err != nil {
continue
}
pageCount++
lastToken = eval.ID
if pageCount >= perPage {
raftReq.PerPage = int32(pageCount)
_, index, err = e.srv.raftApply(structs.EvalDeleteRequestType, &raftReq)
if err != nil {
return count, index, err
}
count += pageCount
pageCount = 0
raftReq.NextToken = lastToken
}
}
// send last batch if it's partial
if pageCount > 0 {
raftReq.PerPage = int32(pageCount)
_, index, err = e.srv.raftApply(structs.EvalDeleteRequestType, &raftReq)
if err != nil {
return count, index, err
}
count += pageCount
}
return count, index, nil
}
// List is used to get a list of the evaluations in the system
func (e *Eval) List(args *structs.EvalListRequest, reply *structs.EvalListResponse) error {
if done, err := e.srv.forward("Eval.List", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "eval", "list"}, time.Now())
namespace := args.RequestNamespace()
// Check for read-job permissions
aclObj, err := e.srv.ResolveToken(args.AuthToken)
if err != nil {
return err
}
if !aclObj.AllowNsOp(namespace, acl.NamespaceCapabilityReadJob) {
return structs.ErrPermissionDenied
}
allow := aclObj.AllowNsOpFunc(acl.NamespaceCapabilityReadJob)
if args.Filter != "" {
// Check for incompatible filtering.
hasLegacyFilter := args.FilterJobID != "" || args.FilterEvalStatus != ""
if hasLegacyFilter {
return structs.ErrIncompatibleFiltering
}
}
// Setup the blocking query
sort := state.SortOption(args.Reverse)
opts := blockingOptions{
queryOpts: &args.QueryOptions,
queryMeta: &reply.QueryMeta,
run: func(ws memdb.WatchSet, store *state.StateStore) error {
// Scan all the evaluations
var err error
var iter memdb.ResultIterator
var opts paginator.StructsTokenizerOptions
// Get the namespaces the user is allowed to access.
allowableNamespaces, err := allowedNSes(aclObj, store, allow)
if err == structs.ErrPermissionDenied {
// return empty evals if token isn't authorized for any
// namespace, matching other endpoints
reply.Evaluations = make([]*structs.Evaluation, 0)
} else if err != nil {
return err
} else {
if prefix := args.QueryOptions.Prefix; prefix != "" {
iter, err = store.EvalsByIDPrefix(ws, namespace, prefix, sort)
opts = paginator.StructsTokenizerOptions{
WithID: true,
}
} else if namespace != structs.AllNamespacesSentinel {
iter, err = store.EvalsByNamespaceOrdered(ws, namespace, sort)
opts = paginator.StructsTokenizerOptions{
WithCreateIndex: true,
WithID: true,
}
} else {
iter, err = store.Evals(ws, sort)
opts = paginator.StructsTokenizerOptions{
WithCreateIndex: true,
WithID: true,
}
}
if err != nil {
return err
}
iter = memdb.NewFilterIterator(iter, func(raw interface{}) bool {
if eval := raw.(*structs.Evaluation); eval != nil {
return args.ShouldBeFiltered(eval)
}
return false
})
tokenizer := paginator.NewStructsTokenizer(iter, opts)
filters := []paginator.Filter{
paginator.NamespaceFilter{
AllowableNamespaces: allowableNamespaces,
},
}
var evals []*structs.Evaluation
paginator, err := paginator.NewPaginator(iter, tokenizer, filters, args.QueryOptions,
func(raw interface{}) error {
eval := raw.(*structs.Evaluation)
evals = append(evals, eval)
return nil
})
if err != nil {
return structs.NewErrRPCCodedf(
http.StatusBadRequest, "failed to create result paginator: %v", err)
}
nextToken, err := paginator.Page()
if err != nil {
return structs.NewErrRPCCodedf(
http.StatusBadRequest, "failed to read result page: %v", err)
}
reply.QueryMeta.NextToken = nextToken
reply.Evaluations = evals
}
// Use the last index that affected the jobs table
index, err := store.Index("evals")
if err != nil {
return err
}
reply.Index = index
// Set the query response
e.srv.setQueryMeta(&reply.QueryMeta)
return nil
}}
return e.srv.blockingRPC(&opts)
}
// Count is used to get a list of the evaluations in the system
func (e *Eval) Count(args *structs.EvalCountRequest, reply *structs.EvalCountResponse) error {
if done, err := e.srv.forward("Eval.Count", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "eval", "count"}, time.Now())
namespace := args.RequestNamespace()
// Check for read-job permissions
aclObj, err := e.srv.ResolveToken(args.AuthToken)
if err != nil {
return err
}
if !aclObj.AllowNsOp(namespace, acl.NamespaceCapabilityReadJob) {
return structs.ErrPermissionDenied
}
allow := aclObj.AllowNsOpFunc(acl.NamespaceCapabilityReadJob)
var filter *bexpr.Evaluator
if args.Filter != "" {
filter, err = bexpr.CreateEvaluator(args.Filter)
if err != nil {
return err
}
}
// Setup the blocking query. This is only superficially like Eval.List,
// because we don't any concerns about pagination, sorting, and legacy
// filter fields.
opts := blockingOptions{
queryOpts: &args.QueryOptions,
queryMeta: &reply.QueryMeta,
run: func(ws memdb.WatchSet, store *state.StateStore) error {
// Scan all the evaluations
var err error
var iter memdb.ResultIterator
// Get the namespaces the user is allowed to access.
allowableNamespaces, err := allowedNSes(aclObj, store, allow)
if err != nil {
return err
}
if prefix := args.QueryOptions.Prefix; prefix != "" {
iter, err = store.EvalsByIDPrefix(ws, namespace, prefix, state.SortDefault)
} else if namespace != structs.AllNamespacesSentinel {
iter, err = store.EvalsByNamespace(ws, namespace)
} else {
iter, err = store.Evals(ws, state.SortDefault)
}
if err != nil {
return err
}
count := 0
iter = memdb.NewFilterIterator(iter, func(raw interface{}) bool {
if raw == nil {
return true
}
eval := raw.(*structs.Evaluation)
if allowableNamespaces != nil && !allowableNamespaces[eval.Namespace] {
return true
}
if filter != nil {
ok, err := filter.Evaluate(eval)
if err != nil {
return true
}
return !ok
}
return false
})
for {
raw := iter.Next()
if raw == nil {
break
}
count++
}
// Use the last index that affected the jobs table
index, err := store.Index("evals")
if err != nil {
return err
}
reply.Index = index
reply.Count = count
// Set the query response
e.srv.setQueryMeta(&reply.QueryMeta)
return nil
}}
return e.srv.blockingRPC(&opts)
}
// Allocations is used to list the allocations for an evaluation
func (e *Eval) Allocations(args *structs.EvalSpecificRequest,
reply *structs.EvalAllocationsResponse) error {
if done, err := e.srv.forward("Eval.Allocations", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "eval", "allocations"}, time.Now())
// Check for read-job permissions
allowNsOp := acl.NamespaceValidator(acl.NamespaceCapabilityReadJob)
aclObj, err := e.srv.ResolveToken(args.AuthToken)
if err != nil {
return err
} else if !allowNsOp(aclObj, args.RequestNamespace()) {
return structs.ErrPermissionDenied
}
// Setup the blocking query
opts := blockingOptions{
queryOpts: &args.QueryOptions,
queryMeta: &reply.QueryMeta,
run: func(ws memdb.WatchSet, state *state.StateStore) error {
// Capture the allocations
allocs, err := state.AllocsByEval(ws, args.EvalID)
if err != nil {
return err
}
// Convert to a stub
if len(allocs) > 0 {
// Evaluations do not span namespaces so just check the
// first allocs namespace.
ns := allocs[0].Namespace
if ns != args.RequestNamespace() && !allowNsOp(aclObj, ns) {
return structs.ErrPermissionDenied
}
reply.Allocations = make([]*structs.AllocListStub, 0, len(allocs))
for _, alloc := range allocs {
reply.Allocations = append(reply.Allocations, alloc.Stub(nil))
}
}
// Use the last index that affected the allocs table
index, err := state.Index("allocs")
if err != nil {
return err
}
reply.Index = index
// Set the query response
e.srv.setQueryMeta(&reply.QueryMeta)
return nil
}}
return e.srv.blockingRPC(&opts)
}