mirror of
https://github.com/kemko/nomad.git
synced 2026-01-01 16:05:42 +03:00
We introduce an alternative solution to the one presented in #24960 which is based on the state store and not previous-next allocation tracking in the reconciler. This new solution reduces cognitive complexity of the scheduler code at the cost of slightly more boilerplate code, but also opens up new possibilities in the future, e.g., allowing users to explicitly "un-stick" volumes with workloads still running. The diagram below illustrates the new logic: SetVolumes() upsertAllocsImpl() sets ns, job +-----------------checks if alloc requests tg in the scheduler v sticky vols and consults | +-----------------------+ state. If there is no claim, | | TaskGroupVolumeClaim: | it creates one. | | - namespace | | | - jobID | | | - tg name | | | - vol ID | v | uniquely identify vol | hasVolumes() +----+------------------+ consults the state | ^ and returns true | | DeleteJobTxn() if there's a match <-----------+ +---------------removes the claim from or if there is no the state previous claim | | | | +-----------------------------+ +------------------------------------------------------+ scheduler state store
502 lines
17 KiB
Go
502 lines
17 KiB
Go
// Copyright (c) HashiCorp, Inc.
|
|
// SPDX-License-Identifier: BUSL-1.1
|
|
|
|
package scheduler
|
|
|
|
import (
|
|
"math"
|
|
"time"
|
|
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
)
|
|
|
|
const (
|
|
// skipScoreThreshold is a threshold used in the limit iterator to skip nodes
|
|
// that have a score lower than this. -1 is the lowest possible score for a
|
|
// node with penalties (based on job anti affinity and node rescheduling penalties
|
|
skipScoreThreshold = 0.0
|
|
|
|
// maxSkip limits the number of nodes that can be skipped in the limit iterator
|
|
maxSkip = 3
|
|
)
|
|
|
|
// Stack is a chained collection of iterators. The stack is used to
|
|
// make placement decisions. Different schedulers may customize the
|
|
// stack they use to vary the way placements are made.
|
|
type Stack interface {
|
|
// SetNodes is used to set the base set of potential nodes
|
|
SetNodes([]*structs.Node)
|
|
|
|
// SetTaskGroup is used to set the job for selection
|
|
SetJob(job *structs.Job)
|
|
|
|
// Select is used to select a node for the task group
|
|
Select(tg *structs.TaskGroup, options *SelectOptions) *RankedNode
|
|
}
|
|
|
|
type SelectOptions struct {
|
|
PenaltyNodeIDs map[string]struct{}
|
|
PreferredNodes []*structs.Node
|
|
Preempt bool
|
|
AllocName string
|
|
AllocationHostVolumeIDs []string
|
|
}
|
|
|
|
// GenericStack is the Stack used for the Generic scheduler. It is
|
|
// designed to make better placement decisions at the cost of performance.
|
|
type GenericStack struct {
|
|
batch bool
|
|
ctx Context
|
|
source *StaticIterator
|
|
|
|
wrappedChecks *FeasibilityWrapper
|
|
quota FeasibleIterator
|
|
jobVersion *uint64
|
|
jobNamespace string
|
|
jobID string
|
|
jobConstraint *ConstraintChecker
|
|
taskGroupDrivers *DriverChecker
|
|
taskGroupConstraint *ConstraintChecker
|
|
taskGroupDevices *DeviceChecker
|
|
taskGroupHostVolumes *HostVolumeChecker
|
|
taskGroupCSIVolumes *CSIVolumeChecker
|
|
taskGroupNetwork *NetworkChecker
|
|
|
|
distinctHostsConstraint *DistinctHostsIterator
|
|
distinctPropertyConstraint *DistinctPropertyIterator
|
|
binPack *BinPackIterator
|
|
jobAntiAff *JobAntiAffinityIterator
|
|
nodeReschedulingPenalty *NodeReschedulingPenaltyIterator
|
|
limit *LimitIterator
|
|
maxScore *MaxScoreIterator
|
|
nodeAffinity *NodeAffinityIterator
|
|
spread *SpreadIterator
|
|
scoreNorm *ScoreNormalizationIterator
|
|
}
|
|
|
|
func (s *GenericStack) SetNodes(baseNodes []*structs.Node) {
|
|
// Shuffle base nodes
|
|
idx, _ := s.ctx.State().LatestIndex()
|
|
shuffleNodes(s.ctx.Plan(), idx, baseNodes)
|
|
|
|
// Update the set of base nodes
|
|
s.source.SetNodes(baseNodes)
|
|
|
|
// Apply a limit function. This is to avoid scanning *every* possible node.
|
|
// For batch jobs we only need to evaluate 2 options and depend on the
|
|
// power of two choices. For services jobs we need to visit "enough".
|
|
// Using a log of the total number of nodes is a good restriction, with
|
|
// at least 2 as the floor
|
|
limit := 2
|
|
if n := len(baseNodes); !s.batch && n > 0 {
|
|
logLimit := int(math.Ceil(math.Log2(float64(n))))
|
|
if logLimit > limit {
|
|
limit = logLimit
|
|
}
|
|
}
|
|
s.limit.SetLimit(limit)
|
|
}
|
|
|
|
func (s *GenericStack) SetJob(job *structs.Job) {
|
|
if s.jobVersion != nil && *s.jobVersion == job.Version {
|
|
return
|
|
}
|
|
|
|
jobVer := job.Version
|
|
s.jobVersion = &jobVer
|
|
s.jobNamespace = job.Namespace
|
|
s.jobID = job.ID
|
|
|
|
s.jobConstraint.SetConstraints(job.Constraints)
|
|
s.distinctHostsConstraint.SetJob(job)
|
|
s.distinctPropertyConstraint.SetJob(job)
|
|
s.binPack.SetJob(job)
|
|
s.jobAntiAff.SetJob(job)
|
|
s.nodeAffinity.SetJob(job)
|
|
s.spread.SetJob(job)
|
|
s.ctx.Eligibility().SetJob(job)
|
|
s.taskGroupCSIVolumes.SetNamespace(job.Namespace)
|
|
s.taskGroupCSIVolumes.SetJobID(job.ID)
|
|
|
|
if contextual, ok := s.quota.(ContextualIterator); ok {
|
|
contextual.SetJob(job)
|
|
}
|
|
}
|
|
|
|
// SetSchedulerConfiguration applies the given scheduler configuration to
|
|
// process nodes. Scheduler configuration values may change per job depending
|
|
// on the node pool being used.
|
|
func (s *GenericStack) SetSchedulerConfiguration(schedConfig *structs.SchedulerConfiguration) {
|
|
s.binPack.SetSchedulerConfiguration(schedConfig)
|
|
}
|
|
|
|
func (s *GenericStack) Select(tg *structs.TaskGroup, options *SelectOptions) *RankedNode {
|
|
|
|
// This block handles trying to select from preferred nodes if options specify them
|
|
// It also sets back the set of nodes to the original nodes
|
|
if options != nil && len(options.PreferredNodes) > 0 {
|
|
originalNodes := s.source.nodes
|
|
s.source.SetNodes(options.PreferredNodes)
|
|
optionsNew := *options
|
|
optionsNew.PreferredNodes = nil
|
|
if option := s.Select(tg, &optionsNew); option != nil {
|
|
s.source.SetNodes(originalNodes)
|
|
return option
|
|
}
|
|
s.source.SetNodes(originalNodes)
|
|
return s.Select(tg, &optionsNew)
|
|
}
|
|
|
|
// Reset the max selector and context
|
|
s.maxScore.Reset()
|
|
s.ctx.Reset()
|
|
start := time.Now()
|
|
|
|
// Get the task groups constraints.
|
|
tgConstr := taskGroupConstraints(tg)
|
|
|
|
// Update the parameters of iterators
|
|
s.taskGroupDrivers.SetDrivers(tgConstr.drivers)
|
|
s.taskGroupConstraint.SetConstraints(tgConstr.constraints)
|
|
s.taskGroupDevices.SetTaskGroup(tg)
|
|
s.taskGroupHostVolumes.SetVolumes(options.AllocName, s.jobNamespace, s.jobID, tg.Name, tg.Volumes)
|
|
s.taskGroupCSIVolumes.SetVolumes(options.AllocName, tg.Volumes)
|
|
if len(tg.Networks) > 0 {
|
|
s.taskGroupNetwork.SetNetwork(tg.Networks[0])
|
|
}
|
|
s.distinctHostsConstraint.SetTaskGroup(tg)
|
|
s.distinctPropertyConstraint.SetTaskGroup(tg)
|
|
s.wrappedChecks.SetTaskGroup(tg.Name)
|
|
s.binPack.SetTaskGroup(tg)
|
|
if options != nil {
|
|
s.binPack.evict = options.Preempt
|
|
}
|
|
s.jobAntiAff.SetTaskGroup(tg)
|
|
if options != nil {
|
|
s.nodeReschedulingPenalty.SetPenaltyNodes(options.PenaltyNodeIDs)
|
|
}
|
|
s.nodeAffinity.SetTaskGroup(tg)
|
|
s.spread.SetTaskGroup(tg)
|
|
|
|
if s.nodeAffinity.hasAffinities() || s.spread.hasSpreads() {
|
|
// scoring spread across all nodes has quadratic behavior, so
|
|
// we need to consider a subset of nodes to keep evaluaton times
|
|
// reasonable but enough to ensure spread is correct. this
|
|
// value was empirically determined.
|
|
s.limit.SetLimit(tg.Count)
|
|
if tg.Count < 100 {
|
|
s.limit.SetLimit(100)
|
|
}
|
|
}
|
|
|
|
if contextual, ok := s.quota.(ContextualIterator); ok {
|
|
contextual.SetTaskGroup(tg)
|
|
}
|
|
|
|
// Find the node with the max score
|
|
option := s.maxScore.Next()
|
|
|
|
// Store the compute time
|
|
s.ctx.Metrics().AllocationTime = time.Since(start)
|
|
return option
|
|
}
|
|
|
|
// SystemStack is the Stack used for the System scheduler. It is designed to
|
|
// attempt to make placements on all nodes.
|
|
type SystemStack struct {
|
|
ctx Context
|
|
source *StaticIterator
|
|
|
|
jobNamespace string
|
|
jobID string
|
|
wrappedChecks *FeasibilityWrapper
|
|
quota FeasibleIterator
|
|
jobConstraint *ConstraintChecker
|
|
taskGroupDrivers *DriverChecker
|
|
taskGroupConstraint *ConstraintChecker
|
|
taskGroupDevices *DeviceChecker
|
|
taskGroupHostVolumes *HostVolumeChecker
|
|
taskGroupCSIVolumes *CSIVolumeChecker
|
|
taskGroupNetwork *NetworkChecker
|
|
|
|
distinctPropertyConstraint *DistinctPropertyIterator
|
|
binPack *BinPackIterator
|
|
scoreNorm *ScoreNormalizationIterator
|
|
}
|
|
|
|
// NewSystemStack constructs a stack used for selecting system and sysbatch
|
|
// job placements.
|
|
//
|
|
// sysbatch is used to determine which scheduler config option is used to
|
|
// control the use of preemption.
|
|
func NewSystemStack(sysbatch bool, ctx Context) *SystemStack {
|
|
// Create a new stack
|
|
s := &SystemStack{ctx: ctx}
|
|
|
|
// Create the source iterator. We visit nodes in a linear order because we
|
|
// have to evaluate on all nodes.
|
|
s.source = NewStaticIterator(ctx, nil)
|
|
|
|
// Attach the job constraints. The job is filled in later.
|
|
s.jobConstraint = NewConstraintChecker(ctx, nil)
|
|
|
|
// Filter on task group drivers first as they are faster
|
|
s.taskGroupDrivers = NewDriverChecker(ctx, nil)
|
|
|
|
// Filter on task group constraints second
|
|
s.taskGroupConstraint = NewConstraintChecker(ctx, nil)
|
|
|
|
// Filter on task group host volumes
|
|
s.taskGroupHostVolumes = NewHostVolumeChecker(ctx)
|
|
|
|
// Filter on available, healthy CSI plugins
|
|
s.taskGroupCSIVolumes = NewCSIVolumeChecker(ctx)
|
|
|
|
// Filter on task group devices
|
|
s.taskGroupDevices = NewDeviceChecker(ctx)
|
|
|
|
// Filter on available client networks
|
|
s.taskGroupNetwork = NewNetworkChecker(ctx)
|
|
|
|
// Create the feasibility wrapper which wraps all feasibility checks in
|
|
// which feasibility checking can be skipped if the computed node class has
|
|
// previously been marked as eligible or ineligible. Generally this will be
|
|
// checks that only needs to examine the single node to determine feasibility.
|
|
jobs := []FeasibilityChecker{s.jobConstraint}
|
|
tgs := []FeasibilityChecker{
|
|
s.taskGroupDrivers,
|
|
s.taskGroupConstraint,
|
|
s.taskGroupDevices,
|
|
s.taskGroupNetwork,
|
|
}
|
|
avail := []FeasibilityChecker{
|
|
s.taskGroupHostVolumes,
|
|
s.taskGroupCSIVolumes,
|
|
}
|
|
s.wrappedChecks = NewFeasibilityWrapper(ctx, s.source, jobs, tgs, avail)
|
|
|
|
// Filter on distinct property constraints.
|
|
s.distinctPropertyConstraint = NewDistinctPropertyIterator(ctx, s.wrappedChecks)
|
|
|
|
// Create the quota iterator to determine if placements would result in
|
|
// the quota attached to the namespace of the job to go over.
|
|
// Note: the quota iterator must be the last feasibility iterator before
|
|
// we upgrade to ranking, or our quota usage will include ineligible
|
|
// nodes!
|
|
s.quota = NewQuotaIterator(ctx, s.distinctPropertyConstraint)
|
|
|
|
// Upgrade from feasible to rank iterator
|
|
rankSource := NewFeasibleRankIterator(ctx, s.quota)
|
|
|
|
// Apply the bin packing, this depends on the resources needed
|
|
// by a particular task group. Enable eviction as system jobs are high
|
|
// priority.
|
|
//
|
|
// The scheduler configuration is read directly from state but only
|
|
// values that can't be specified per node pool should be used. Other
|
|
// values must be merged by calling schedConfig.WithNodePool() and set in
|
|
// the stack by calling SetSchedulerConfiguration().
|
|
_, schedConfig, _ := s.ctx.State().SchedulerConfig()
|
|
enablePreemption := true
|
|
if schedConfig != nil {
|
|
if sysbatch {
|
|
enablePreemption = schedConfig.PreemptionConfig.SysBatchSchedulerEnabled
|
|
} else {
|
|
enablePreemption = schedConfig.PreemptionConfig.SystemSchedulerEnabled
|
|
}
|
|
}
|
|
|
|
// Create binpack iterator
|
|
s.binPack = NewBinPackIterator(ctx, rankSource, enablePreemption, 0)
|
|
|
|
// Apply score normalization
|
|
s.scoreNorm = NewScoreNormalizationIterator(ctx, s.binPack)
|
|
return s
|
|
}
|
|
|
|
func (s *SystemStack) SetNodes(baseNodes []*structs.Node) {
|
|
// Update the set of base nodes
|
|
s.source.SetNodes(baseNodes)
|
|
}
|
|
|
|
func (s *SystemStack) SetJob(job *structs.Job) {
|
|
s.jobNamespace = job.Namespace
|
|
s.jobID = job.ID
|
|
s.jobConstraint.SetConstraints(job.Constraints)
|
|
s.distinctPropertyConstraint.SetJob(job)
|
|
s.binPack.SetJob(job)
|
|
s.ctx.Eligibility().SetJob(job)
|
|
s.taskGroupCSIVolumes.SetNamespace(job.Namespace)
|
|
s.taskGroupCSIVolumes.SetJobID(job.ID)
|
|
|
|
if contextual, ok := s.quota.(ContextualIterator); ok {
|
|
contextual.SetJob(job)
|
|
}
|
|
}
|
|
|
|
// SetSchedulerConfiguration applies the given scheduler configuration to
|
|
// process nodes. Scheduler configuration values may change per job depending
|
|
// on the node pool being used.
|
|
func (s *SystemStack) SetSchedulerConfiguration(schedConfig *structs.SchedulerConfiguration) {
|
|
s.binPack.SetSchedulerConfiguration(schedConfig)
|
|
}
|
|
|
|
func (s *SystemStack) Select(tg *structs.TaskGroup, options *SelectOptions) *RankedNode {
|
|
// Reset the binpack selector and context
|
|
s.scoreNorm.Reset()
|
|
s.ctx.Reset()
|
|
start := time.Now()
|
|
|
|
// Get the task groups constraints.
|
|
tgConstr := taskGroupConstraints(tg)
|
|
|
|
// Update the parameters of iterators
|
|
s.taskGroupDrivers.SetDrivers(tgConstr.drivers)
|
|
s.taskGroupConstraint.SetConstraints(tgConstr.constraints)
|
|
s.taskGroupDevices.SetTaskGroup(tg)
|
|
s.taskGroupHostVolumes.SetVolumes(options.AllocName, s.jobNamespace, s.jobID, tg.Name, tg.Volumes)
|
|
s.taskGroupCSIVolumes.SetVolumes(options.AllocName, tg.Volumes)
|
|
if len(tg.Networks) > 0 {
|
|
s.taskGroupNetwork.SetNetwork(tg.Networks[0])
|
|
}
|
|
s.wrappedChecks.SetTaskGroup(tg.Name)
|
|
s.distinctPropertyConstraint.SetTaskGroup(tg)
|
|
s.binPack.SetTaskGroup(tg)
|
|
|
|
if contextual, ok := s.quota.(ContextualIterator); ok {
|
|
contextual.SetTaskGroup(tg)
|
|
}
|
|
|
|
// Get the next option that satisfies the constraints.
|
|
option := s.scoreNorm.Next()
|
|
|
|
// Store the compute time
|
|
s.ctx.Metrics().AllocationTime = time.Since(start)
|
|
return option
|
|
}
|
|
|
|
// NewGenericStack constructs a stack used for selecting service placements
|
|
func NewGenericStack(batch bool, ctx Context) *GenericStack {
|
|
// Create a new stack
|
|
s := &GenericStack{
|
|
batch: batch,
|
|
ctx: ctx,
|
|
}
|
|
|
|
// Create the source iterator. We randomize the order we visit nodes
|
|
// to reduce collisions between schedulers and to do a basic load
|
|
// balancing across eligible nodes.
|
|
s.source = NewRandomIterator(ctx, nil)
|
|
|
|
// Attach the job constraints. The job is filled in later.
|
|
s.jobConstraint = NewConstraintChecker(ctx, nil)
|
|
|
|
// Filter on task group drivers first as they are faster
|
|
s.taskGroupDrivers = NewDriverChecker(ctx, nil)
|
|
|
|
// Filter on task group constraints second
|
|
s.taskGroupConstraint = NewConstraintChecker(ctx, nil)
|
|
|
|
// Filter on task group devices
|
|
s.taskGroupDevices = NewDeviceChecker(ctx)
|
|
|
|
// Filter on task group host volumes
|
|
s.taskGroupHostVolumes = NewHostVolumeChecker(ctx)
|
|
|
|
// Filter on available, healthy CSI plugins
|
|
s.taskGroupCSIVolumes = NewCSIVolumeChecker(ctx)
|
|
|
|
// Filter on available client networks
|
|
s.taskGroupNetwork = NewNetworkChecker(ctx)
|
|
|
|
// Create the feasibility wrapper which wraps all feasibility checks in
|
|
// which feasibility checking can be skipped if the computed node class has
|
|
// previously been marked as eligible or ineligible. Generally this will be
|
|
// checks that only needs to examine the single node to determine feasibility.
|
|
jobs := []FeasibilityChecker{s.jobConstraint}
|
|
tgs := []FeasibilityChecker{
|
|
s.taskGroupDrivers,
|
|
s.taskGroupConstraint,
|
|
s.taskGroupDevices,
|
|
s.taskGroupNetwork,
|
|
}
|
|
avail := []FeasibilityChecker{
|
|
s.taskGroupHostVolumes,
|
|
s.taskGroupCSIVolumes,
|
|
}
|
|
s.wrappedChecks = NewFeasibilityWrapper(ctx, s.source, jobs, tgs, avail)
|
|
|
|
// Filter on distinct host constraints.
|
|
s.distinctHostsConstraint = NewDistinctHostsIterator(ctx, s.wrappedChecks)
|
|
|
|
// Filter on distinct property constraints.
|
|
s.distinctPropertyConstraint = NewDistinctPropertyIterator(ctx, s.distinctHostsConstraint)
|
|
|
|
// Create the quota iterator to determine if placements would result in
|
|
// the quota attached to the namespace of the job to go over.
|
|
// Note: the quota iterator must be the last feasibility iterator before
|
|
// we upgrade to ranking, or our quota usage will include ineligible
|
|
// nodes!
|
|
s.quota = NewQuotaIterator(ctx, s.distinctPropertyConstraint)
|
|
|
|
// Upgrade from feasible to rank iterator
|
|
rankSource := NewFeasibleRankIterator(ctx, s.quota)
|
|
|
|
// Apply the bin packing, this depends on the resources needed
|
|
// by a particular task group.
|
|
s.binPack = NewBinPackIterator(ctx, rankSource, false, 0)
|
|
|
|
// Apply the job anti-affinity iterator. This is to avoid placing
|
|
// multiple allocations on the same node for this job.
|
|
s.jobAntiAff = NewJobAntiAffinityIterator(ctx, s.binPack, "")
|
|
|
|
// Apply node rescheduling penalty. This tries to avoid placing on a
|
|
// node where the allocation failed previously
|
|
s.nodeReschedulingPenalty = NewNodeReschedulingPenaltyIterator(ctx, s.jobAntiAff)
|
|
|
|
// Apply scores based on affinity block
|
|
s.nodeAffinity = NewNodeAffinityIterator(ctx, s.nodeReschedulingPenalty)
|
|
|
|
// Apply scores based on spread block
|
|
s.spread = NewSpreadIterator(ctx, s.nodeAffinity)
|
|
|
|
// Add the preemption options scoring iterator
|
|
preemptionScorer := NewPreemptionScoringIterator(ctx, s.spread)
|
|
|
|
// Normalizes scores by averaging them across various scorers
|
|
s.scoreNorm = NewScoreNormalizationIterator(ctx, preemptionScorer)
|
|
|
|
// Apply a limit function. This is to avoid scanning *every* possible node.
|
|
s.limit = NewLimitIterator(ctx, s.scoreNorm, 2, skipScoreThreshold, maxSkip)
|
|
|
|
// Select the node with the maximum score for placement
|
|
s.maxScore = NewMaxScoreIterator(ctx, s.limit)
|
|
return s
|
|
}
|
|
|
|
// taskGroupConstraints collects the constraints, drivers and resources required by each
|
|
// sub-task to aggregate the TaskGroup totals
|
|
func taskGroupConstraints(tg *structs.TaskGroup) tgConstrainTuple {
|
|
c := tgConstrainTuple{
|
|
constraints: make([]*structs.Constraint, 0, len(tg.Constraints)),
|
|
drivers: make(map[string]struct{}),
|
|
}
|
|
|
|
c.constraints = append(c.constraints, tg.Constraints...)
|
|
for _, task := range tg.Tasks {
|
|
c.drivers[task.Driver] = struct{}{}
|
|
c.constraints = append(c.constraints, task.Constraints...)
|
|
}
|
|
|
|
return c
|
|
}
|
|
|
|
// tgConstrainTuple is used to store the total constraints of a task group.
|
|
type tgConstrainTuple struct {
|
|
// Holds the combined constraints of the task group and all it's sub-tasks.
|
|
constraints []*structs.Constraint
|
|
|
|
// The set of required drivers within the task group.
|
|
drivers map[string]struct{}
|
|
}
|