Files
nomad/scheduler/stack.go
Luiz Aoqui 0ccf942b26 scheduler: fix host volume feasibility check (#18679)
Host volumes were considered regular feasibility checks. This had two
unintended consequences.

The first happened when scheduling an allocation with a host volume on a
set of nodes with the same computed class but where only some of them
had the desired host volume.

If the first node evaluated did not have the host volume, the entire
node class was considered ineligible for the task group.

```go
// Run the job feasibility checks.
for _, check := range w.jobCheckers {
	feasible := check.Feasible(option)
	if !feasible {
		// If the job hasn't escaped, set it to be ineligible since it
		// failed a job check.
		if !jobEscaped {
			evalElig.SetJobEligibility(false, option.ComputedClass)
		}
		continue OUTER
	}
}
```

This results in all nodes with the same computed class to be skipped,
even if they do have the desired host volume.

```go
switch evalElig.JobStatus(option.ComputedClass) {
case EvalComputedClassIneligible:
	// Fast path the ineligible case
	metrics.FilterNode(option, "computed class ineligible")
	continue
```

The second consequence is somewhat the opposite. When an allocation has
a host volume with `per_alloc = true` the node must have a host volume
that matches the allocation index, so each allocation is likely to be
placed in different nodes.

But when the first allocation found a node match, it registered the node
class as eligible for the task group.

```go
// Set the task group eligibility if the constraints weren't escaped and
// it hasn't been set before.
if !tgEscaped && tgUnknown {
	evalElig.SetTaskGroupEligibility(true, w.tg, option.ComputedClass)
}
```

This could cause other allocations to be placed on nodes without the
expected host volume because of the computed node class fast path. The
node feasibility for the volume was never checked.

```go
case EvalComputedClassEligible:
	// Fast path the eligible case
	if w.available(option) {
		return option
	}
	// We match the class but are temporarily unavailable
	continue OUTER
```

These problems did not happen with CSI volumes kind of accidentally.
Since the `CSIVolumeChecker` was not placed in the `tgCheckers` list it
did not cause the node class to be considered ineligible on failure
(avoiding the first problem).

And, as illustrated in the code snippet above, the eligible node class
fast path checks `tgAvailable` (where `CSIVolumeChecker` is placed)
before returning the option (avoiding the second problem).

By also placing `HostVolumeChecker` in the `tgAvailable` list instead of
`tgCheckers` we also avoid these problems on host volume feasibility.
2023-10-06 11:00:48 -04:00

493 lines
16 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: BUSL-1.1
package scheduler
import (
"math"
"time"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// skipScoreThreshold is a threshold used in the limit iterator to skip nodes
// that have a score lower than this. -1 is the lowest possible score for a
// node with penalties (based on job anti affinity and node rescheduling penalties
skipScoreThreshold = 0.0
// maxSkip limits the number of nodes that can be skipped in the limit iterator
maxSkip = 3
)
// Stack is a chained collection of iterators. The stack is used to
// make placement decisions. Different schedulers may customize the
// stack they use to vary the way placements are made.
type Stack interface {
// SetNodes is used to set the base set of potential nodes
SetNodes([]*structs.Node)
// SetTaskGroup is used to set the job for selection
SetJob(job *structs.Job)
// Select is used to select a node for the task group
Select(tg *structs.TaskGroup, options *SelectOptions) *RankedNode
}
type SelectOptions struct {
PenaltyNodeIDs map[string]struct{}
PreferredNodes []*structs.Node
Preempt bool
AllocName string
}
// GenericStack is the Stack used for the Generic scheduler. It is
// designed to make better placement decisions at the cost of performance.
type GenericStack struct {
batch bool
ctx Context
source *StaticIterator
wrappedChecks *FeasibilityWrapper
quota FeasibleIterator
jobVersion *uint64
jobConstraint *ConstraintChecker
taskGroupDrivers *DriverChecker
taskGroupConstraint *ConstraintChecker
taskGroupDevices *DeviceChecker
taskGroupHostVolumes *HostVolumeChecker
taskGroupCSIVolumes *CSIVolumeChecker
taskGroupNetwork *NetworkChecker
distinctHostsConstraint *DistinctHostsIterator
distinctPropertyConstraint *DistinctPropertyIterator
binPack *BinPackIterator
jobAntiAff *JobAntiAffinityIterator
nodeReschedulingPenalty *NodeReschedulingPenaltyIterator
limit *LimitIterator
maxScore *MaxScoreIterator
nodeAffinity *NodeAffinityIterator
spread *SpreadIterator
scoreNorm *ScoreNormalizationIterator
}
func (s *GenericStack) SetNodes(baseNodes []*structs.Node) {
// Shuffle base nodes
idx, _ := s.ctx.State().LatestIndex()
shuffleNodes(s.ctx.Plan(), idx, baseNodes)
// Update the set of base nodes
s.source.SetNodes(baseNodes)
// Apply a limit function. This is to avoid scanning *every* possible node.
// For batch jobs we only need to evaluate 2 options and depend on the
// power of two choices. For services jobs we need to visit "enough".
// Using a log of the total number of nodes is a good restriction, with
// at least 2 as the floor
limit := 2
if n := len(baseNodes); !s.batch && n > 0 {
logLimit := int(math.Ceil(math.Log2(float64(n))))
if logLimit > limit {
limit = logLimit
}
}
s.limit.SetLimit(limit)
}
func (s *GenericStack) SetJob(job *structs.Job) {
if s.jobVersion != nil && *s.jobVersion == job.Version {
return
}
jobVer := job.Version
s.jobVersion = &jobVer
s.jobConstraint.SetConstraints(job.Constraints)
s.distinctHostsConstraint.SetJob(job)
s.distinctPropertyConstraint.SetJob(job)
s.binPack.SetJob(job)
s.jobAntiAff.SetJob(job)
s.nodeAffinity.SetJob(job)
s.spread.SetJob(job)
s.ctx.Eligibility().SetJob(job)
s.taskGroupCSIVolumes.SetNamespace(job.Namespace)
s.taskGroupCSIVolumes.SetJobID(job.ID)
if contextual, ok := s.quota.(ContextualIterator); ok {
contextual.SetJob(job)
}
}
// SetSchedulerConfiguration applies the given scheduler configuration to
// process nodes. Scheduler configuration values may change per job depending
// on the node pool being used.
func (s *GenericStack) SetSchedulerConfiguration(schedConfig *structs.SchedulerConfiguration) {
s.binPack.SetSchedulerConfiguration(schedConfig)
}
func (s *GenericStack) Select(tg *structs.TaskGroup, options *SelectOptions) *RankedNode {
// This block handles trying to select from preferred nodes if options specify them
// It also sets back the set of nodes to the original nodes
if options != nil && len(options.PreferredNodes) > 0 {
originalNodes := s.source.nodes
s.source.SetNodes(options.PreferredNodes)
optionsNew := *options
optionsNew.PreferredNodes = nil
if option := s.Select(tg, &optionsNew); option != nil {
s.source.SetNodes(originalNodes)
return option
}
s.source.SetNodes(originalNodes)
return s.Select(tg, &optionsNew)
}
// Reset the max selector and context
s.maxScore.Reset()
s.ctx.Reset()
start := time.Now()
// Get the task groups constraints.
tgConstr := taskGroupConstraints(tg)
// Update the parameters of iterators
s.taskGroupDrivers.SetDrivers(tgConstr.drivers)
s.taskGroupConstraint.SetConstraints(tgConstr.constraints)
s.taskGroupDevices.SetTaskGroup(tg)
s.taskGroupHostVolumes.SetVolumes(options.AllocName, tg.Volumes)
s.taskGroupCSIVolumes.SetVolumes(options.AllocName, tg.Volumes)
if len(tg.Networks) > 0 {
s.taskGroupNetwork.SetNetwork(tg.Networks[0])
}
s.distinctHostsConstraint.SetTaskGroup(tg)
s.distinctPropertyConstraint.SetTaskGroup(tg)
s.wrappedChecks.SetTaskGroup(tg.Name)
s.binPack.SetTaskGroup(tg)
if options != nil {
s.binPack.evict = options.Preempt
}
s.jobAntiAff.SetTaskGroup(tg)
if options != nil {
s.nodeReschedulingPenalty.SetPenaltyNodes(options.PenaltyNodeIDs)
}
s.nodeAffinity.SetTaskGroup(tg)
s.spread.SetTaskGroup(tg)
if s.nodeAffinity.hasAffinities() || s.spread.hasSpreads() {
// scoring spread across all nodes has quadratic behavior, so
// we need to consider a subset of nodes to keep evaluaton times
// reasonable but enough to ensure spread is correct. this
// value was empirically determined.
s.limit.SetLimit(tg.Count)
if tg.Count < 100 {
s.limit.SetLimit(100)
}
}
if contextual, ok := s.quota.(ContextualIterator); ok {
contextual.SetTaskGroup(tg)
}
// Find the node with the max score
option := s.maxScore.Next()
// Store the compute time
s.ctx.Metrics().AllocationTime = time.Since(start)
return option
}
// SystemStack is the Stack used for the System scheduler. It is designed to
// attempt to make placements on all nodes.
type SystemStack struct {
ctx Context
source *StaticIterator
wrappedChecks *FeasibilityWrapper
quota FeasibleIterator
jobConstraint *ConstraintChecker
taskGroupDrivers *DriverChecker
taskGroupConstraint *ConstraintChecker
taskGroupDevices *DeviceChecker
taskGroupHostVolumes *HostVolumeChecker
taskGroupCSIVolumes *CSIVolumeChecker
taskGroupNetwork *NetworkChecker
distinctPropertyConstraint *DistinctPropertyIterator
binPack *BinPackIterator
scoreNorm *ScoreNormalizationIterator
}
// NewSystemStack constructs a stack used for selecting system and sysbatch
// job placements.
//
// sysbatch is used to determine which scheduler config option is used to
// control the use of preemption.
func NewSystemStack(sysbatch bool, ctx Context) *SystemStack {
// Create a new stack
s := &SystemStack{ctx: ctx}
// Create the source iterator. We visit nodes in a linear order because we
// have to evaluate on all nodes.
s.source = NewStaticIterator(ctx, nil)
// Attach the job constraints. The job is filled in later.
s.jobConstraint = NewConstraintChecker(ctx, nil)
// Filter on task group drivers first as they are faster
s.taskGroupDrivers = NewDriverChecker(ctx, nil)
// Filter on task group constraints second
s.taskGroupConstraint = NewConstraintChecker(ctx, nil)
// Filter on task group host volumes
s.taskGroupHostVolumes = NewHostVolumeChecker(ctx)
// Filter on available, healthy CSI plugins
s.taskGroupCSIVolumes = NewCSIVolumeChecker(ctx)
// Filter on task group devices
s.taskGroupDevices = NewDeviceChecker(ctx)
// Filter on available client networks
s.taskGroupNetwork = NewNetworkChecker(ctx)
// Create the feasibility wrapper which wraps all feasibility checks in
// which feasibility checking can be skipped if the computed node class has
// previously been marked as eligible or ineligible. Generally this will be
// checks that only needs to examine the single node to determine feasibility.
jobs := []FeasibilityChecker{s.jobConstraint}
tgs := []FeasibilityChecker{
s.taskGroupDrivers,
s.taskGroupConstraint,
s.taskGroupDevices,
s.taskGroupNetwork,
}
avail := []FeasibilityChecker{
s.taskGroupHostVolumes,
s.taskGroupCSIVolumes,
}
s.wrappedChecks = NewFeasibilityWrapper(ctx, s.source, jobs, tgs, avail)
// Filter on distinct property constraints.
s.distinctPropertyConstraint = NewDistinctPropertyIterator(ctx, s.wrappedChecks)
// Create the quota iterator to determine if placements would result in
// the quota attached to the namespace of the job to go over.
// Note: the quota iterator must be the last feasibility iterator before
// we upgrade to ranking, or our quota usage will include ineligible
// nodes!
s.quota = NewQuotaIterator(ctx, s.distinctPropertyConstraint)
// Upgrade from feasible to rank iterator
rankSource := NewFeasibleRankIterator(ctx, s.quota)
// Apply the bin packing, this depends on the resources needed
// by a particular task group. Enable eviction as system jobs are high
// priority.
//
// The scheduler configuration is read directly from state but only
// values that can't be specified per node pool should be used. Other
// values must be merged by calling schedConfig.WithNodePool() and set in
// the stack by calling SetSchedulerConfiguration().
_, schedConfig, _ := s.ctx.State().SchedulerConfig()
enablePreemption := true
if schedConfig != nil {
if sysbatch {
enablePreemption = schedConfig.PreemptionConfig.SysBatchSchedulerEnabled
} else {
enablePreemption = schedConfig.PreemptionConfig.SystemSchedulerEnabled
}
}
// Create binpack iterator
s.binPack = NewBinPackIterator(ctx, rankSource, enablePreemption, 0)
// Apply score normalization
s.scoreNorm = NewScoreNormalizationIterator(ctx, s.binPack)
return s
}
func (s *SystemStack) SetNodes(baseNodes []*structs.Node) {
// Update the set of base nodes
s.source.SetNodes(baseNodes)
}
func (s *SystemStack) SetJob(job *structs.Job) {
s.jobConstraint.SetConstraints(job.Constraints)
s.distinctPropertyConstraint.SetJob(job)
s.binPack.SetJob(job)
s.ctx.Eligibility().SetJob(job)
s.taskGroupCSIVolumes.SetNamespace(job.Namespace)
s.taskGroupCSIVolumes.SetJobID(job.ID)
if contextual, ok := s.quota.(ContextualIterator); ok {
contextual.SetJob(job)
}
}
// SetSchedulerConfiguration applies the given scheduler configuration to
// process nodes. Scheduler configuration values may change per job depending
// on the node pool being used.
func (s *SystemStack) SetSchedulerConfiguration(schedConfig *structs.SchedulerConfiguration) {
s.binPack.SetSchedulerConfiguration(schedConfig)
}
func (s *SystemStack) Select(tg *structs.TaskGroup, options *SelectOptions) *RankedNode {
// Reset the binpack selector and context
s.scoreNorm.Reset()
s.ctx.Reset()
start := time.Now()
// Get the task groups constraints.
tgConstr := taskGroupConstraints(tg)
// Update the parameters of iterators
s.taskGroupDrivers.SetDrivers(tgConstr.drivers)
s.taskGroupConstraint.SetConstraints(tgConstr.constraints)
s.taskGroupDevices.SetTaskGroup(tg)
s.taskGroupHostVolumes.SetVolumes(options.AllocName, tg.Volumes)
s.taskGroupCSIVolumes.SetVolumes(options.AllocName, tg.Volumes)
if len(tg.Networks) > 0 {
s.taskGroupNetwork.SetNetwork(tg.Networks[0])
}
s.wrappedChecks.SetTaskGroup(tg.Name)
s.distinctPropertyConstraint.SetTaskGroup(tg)
s.binPack.SetTaskGroup(tg)
if contextual, ok := s.quota.(ContextualIterator); ok {
contextual.SetTaskGroup(tg)
}
// Get the next option that satisfies the constraints.
option := s.scoreNorm.Next()
// Store the compute time
s.ctx.Metrics().AllocationTime = time.Since(start)
return option
}
// NewGenericStack constructs a stack used for selecting service placements
func NewGenericStack(batch bool, ctx Context) *GenericStack {
// Create a new stack
s := &GenericStack{
batch: batch,
ctx: ctx,
}
// Create the source iterator. We randomize the order we visit nodes
// to reduce collisions between schedulers and to do a basic load
// balancing across eligible nodes.
s.source = NewRandomIterator(ctx, nil)
// Attach the job constraints. The job is filled in later.
s.jobConstraint = NewConstraintChecker(ctx, nil)
// Filter on task group drivers first as they are faster
s.taskGroupDrivers = NewDriverChecker(ctx, nil)
// Filter on task group constraints second
s.taskGroupConstraint = NewConstraintChecker(ctx, nil)
// Filter on task group devices
s.taskGroupDevices = NewDeviceChecker(ctx)
// Filter on task group host volumes
s.taskGroupHostVolumes = NewHostVolumeChecker(ctx)
// Filter on available, healthy CSI plugins
s.taskGroupCSIVolumes = NewCSIVolumeChecker(ctx)
// Filter on available client networks
s.taskGroupNetwork = NewNetworkChecker(ctx)
// Create the feasibility wrapper which wraps all feasibility checks in
// which feasibility checking can be skipped if the computed node class has
// previously been marked as eligible or ineligible. Generally this will be
// checks that only needs to examine the single node to determine feasibility.
jobs := []FeasibilityChecker{s.jobConstraint}
tgs := []FeasibilityChecker{
s.taskGroupDrivers,
s.taskGroupConstraint,
s.taskGroupDevices,
s.taskGroupNetwork,
}
avail := []FeasibilityChecker{
s.taskGroupHostVolumes,
s.taskGroupCSIVolumes,
}
s.wrappedChecks = NewFeasibilityWrapper(ctx, s.source, jobs, tgs, avail)
// Filter on distinct host constraints.
s.distinctHostsConstraint = NewDistinctHostsIterator(ctx, s.wrappedChecks)
// Filter on distinct property constraints.
s.distinctPropertyConstraint = NewDistinctPropertyIterator(ctx, s.distinctHostsConstraint)
// Create the quota iterator to determine if placements would result in
// the quota attached to the namespace of the job to go over.
// Note: the quota iterator must be the last feasibility iterator before
// we upgrade to ranking, or our quota usage will include ineligible
// nodes!
s.quota = NewQuotaIterator(ctx, s.distinctPropertyConstraint)
// Upgrade from feasible to rank iterator
rankSource := NewFeasibleRankIterator(ctx, s.quota)
// Apply the bin packing, this depends on the resources needed
// by a particular task group.
s.binPack = NewBinPackIterator(ctx, rankSource, false, 0)
// Apply the job anti-affinity iterator. This is to avoid placing
// multiple allocations on the same node for this job.
s.jobAntiAff = NewJobAntiAffinityIterator(ctx, s.binPack, "")
// Apply node rescheduling penalty. This tries to avoid placing on a
// node where the allocation failed previously
s.nodeReschedulingPenalty = NewNodeReschedulingPenaltyIterator(ctx, s.jobAntiAff)
// Apply scores based on affinity block
s.nodeAffinity = NewNodeAffinityIterator(ctx, s.nodeReschedulingPenalty)
// Apply scores based on spread block
s.spread = NewSpreadIterator(ctx, s.nodeAffinity)
// Add the preemption options scoring iterator
preemptionScorer := NewPreemptionScoringIterator(ctx, s.spread)
// Normalizes scores by averaging them across various scorers
s.scoreNorm = NewScoreNormalizationIterator(ctx, preemptionScorer)
// Apply a limit function. This is to avoid scanning *every* possible node.
s.limit = NewLimitIterator(ctx, s.scoreNorm, 2, skipScoreThreshold, maxSkip)
// Select the node with the maximum score for placement
s.maxScore = NewMaxScoreIterator(ctx, s.limit)
return s
}
// taskGroupConstraints collects the constraints, drivers and resources required by each
// sub-task to aggregate the TaskGroup totals
func taskGroupConstraints(tg *structs.TaskGroup) tgConstrainTuple {
c := tgConstrainTuple{
constraints: make([]*structs.Constraint, 0, len(tg.Constraints)),
drivers: make(map[string]struct{}),
}
c.constraints = append(c.constraints, tg.Constraints...)
for _, task := range tg.Tasks {
c.drivers[task.Driver] = struct{}{}
c.constraints = append(c.constraints, task.Constraints...)
}
return c
}
// tgConstrainTuple is used to store the total constraints of a task group.
type tgConstrainTuple struct {
// Holds the combined constraints of the task group and all it's sub-tasks.
constraints []*structs.Constraint
// The set of required drivers within the task group.
drivers map[string]struct{}
}