System scheduler and system stack

This commit is contained in:
Alex Dadgar
2015-10-14 16:43:06 -07:00
parent 607da3f784
commit b24f48a4ed
11 changed files with 1442 additions and 6 deletions

View File

@@ -109,6 +109,58 @@ func Job() *structs.Job {
return job
}
func SystemJob() *structs.Job {
job := &structs.Job{
Region: "global",
ID: structs.GenerateUUID(),
Name: "my-job",
Type: structs.JobTypeSystem,
Priority: 100,
AllAtOnce: false,
Datacenters: []string{"dc1"},
Constraints: []*structs.Constraint{
&structs.Constraint{
Hard: true,
LTarget: "$attr.kernel.name",
RTarget: "linux",
Operand: "=",
},
},
TaskGroups: []*structs.TaskGroup{
&structs.TaskGroup{
Name: "web",
Tasks: []*structs.Task{
&structs.Task{
Name: "web",
Driver: "exec",
Config: map[string]string{
"command": "/bin/date",
"args": "+%s",
},
Resources: &structs.Resources{
CPU: 500,
MemoryMB: 256,
Networks: []*structs.NetworkResource{
&structs.NetworkResource{
MBits: 50,
DynamicPorts: []string{"http"},
},
},
},
},
},
},
},
Meta: map[string]string{
"owner": "armon",
},
Status: structs.JobStatusPending,
CreateIndex: 42,
ModifyIndex: 99,
}
return job
}
func Eval() *structs.Evaluation {
eval := &structs.Evaluation{
ID: structs.GenerateUUID(),

View File

@@ -699,6 +699,7 @@ const (
JobTypeCore = "_core"
JobTypeService = "service"
JobTypeBatch = "batch"
JobTypeSystem = "system"
)
const (

View File

@@ -4,6 +4,7 @@ import (
"fmt"
"reflect"
"regexp"
"strconv"
"strings"
"github.com/hashicorp/go-version"
@@ -129,10 +130,22 @@ func (iter *DriverIterator) Reset() {
func (iter *DriverIterator) hasDrivers(option *structs.Node) bool {
for driver := range iter.drivers {
driverStr := fmt.Sprintf("driver.%s", driver)
_, ok := option.Attributes[driverStr]
value, ok := option.Attributes[driverStr]
if !ok {
return false
}
enabled, err := strconv.ParseBool(value)
if err != nil {
iter.ctx.Logger().
Printf("[WARN] scheduler.DriverIterator: node %v has invalid driver setting %v: %v",
option.ID, driverStr, value)
return false
}
if !enabled {
return false
}
}
return true
}

View File

@@ -275,7 +275,7 @@ func (s *GenericScheduler) inplaceUpdate(updates []allocTuple) []allocTuple {
n := len(updates)
inplace := 0
for i := 0; i < n; i++ {
// Get the udpate
// Get the update
update := updates[i]
// Check if the task drivers or config has changed, requires

View File

@@ -22,7 +22,7 @@ func TestServiceSched_JobRegister(t *testing.T) {
job := mock.Job()
noErr(t, h.State.UpsertJob(h.NextIndex(), job))
// Create a mock evaluation to deregister the job
// Create a mock evaluation to register the job
eval := &structs.Evaluation{
ID: structs.GenerateUUID(),
Priority: job.Priority,
@@ -71,7 +71,7 @@ func TestServiceSched_JobRegister_AllocFail(t *testing.T) {
job := mock.Job()
noErr(t, h.State.UpsertJob(h.NextIndex(), job))
// Create a mock evaluation to deregister the job
// Create a mock evaluation to register the job
eval := &structs.Evaluation{
ID: structs.GenerateUUID(),
Priority: job.Priority,
@@ -550,7 +550,7 @@ func TestServiceSched_RetryLimit(t *testing.T) {
job := mock.Job()
noErr(t, h.State.UpsertJob(h.NextIndex(), job))
// Create a mock evaluation to deregister the job
// Create a mock evaluation to register the job
eval := &structs.Evaluation{
ID: structs.GenerateUUID(),
Priority: job.Priority,

View File

@@ -13,6 +13,7 @@ import (
var BuiltinSchedulers = map[string]Factory{
"service": NewServiceScheduler,
"batch": NewBatchScheduler,
"system": NewSystemScheduler,
}
// NewScheduler is used to instantiate and return a new scheduler

View File

@@ -109,7 +109,7 @@ func (s *GenericStack) SetNodes(baseNodes []*structs.Node) {
// Apply a limit function. This is to avoid scanning *every* possible node.
// For batch jobs we only need to evaluate 2 options and depend on the
// powwer of two choices. For services jobs we need to visit "enough".
// power of two choices. For services jobs we need to visit "enough".
// Using a log of the total number of nodes is a good restriction, with
// at least 2 as the floor
limit := 2
@@ -165,3 +165,95 @@ func (s *GenericStack) Select(tg *structs.TaskGroup) (*RankedNode, *structs.Reso
s.ctx.Metrics().AllocationTime = time.Since(start)
return option, size
}
// SystemStack is the Stack used for the System scheduler. It is designed to
// attempt to make placements on all nodes.
type SystemStack struct {
ctx Context
source *StaticIterator
jobConstraint *ConstraintIterator
taskGroupDrivers *DriverIterator
taskGroupConstraint *ConstraintIterator
binPack *BinPackIterator
}
// NewSystemStack constructs a stack used for selecting service placements
func NewSystemStack(ctx Context, baseNodes []*structs.Node) *SystemStack {
// Create a new stack
s := &SystemStack{ctx: ctx}
// Create the source iterator. We visit nodes in a linear order because we
// have to evaluate on all nodes.
s.source = NewStaticIterator(ctx, baseNodes)
// Attach the job constraints. The job is filled in later.
s.jobConstraint = NewConstraintIterator(ctx, s.source, nil)
// Filter on task group drivers first as they are faster
s.taskGroupDrivers = NewDriverIterator(ctx, s.jobConstraint, nil)
// Filter on task group constraints second
s.taskGroupConstraint = NewConstraintIterator(ctx, s.taskGroupDrivers, nil)
// Upgrade from feasible to rank iterator
rankSource := NewFeasibleRankIterator(ctx, s.taskGroupConstraint)
// Apply the bin packing, this depends on the resources needed
// by a particular task group. Enable eviction as system jobs are high
// priority.
s.binPack = NewBinPackIterator(ctx, rankSource, true, 0)
// Set the nodes if given
if len(baseNodes) != 0 {
s.SetNodes(baseNodes)
}
return s
}
func (s *SystemStack) SetNodes(baseNodes []*structs.Node) {
// Update the set of base nodes
s.source.SetNodes(baseNodes)
}
func (s *SystemStack) SetJob(job *structs.Job) {
s.jobConstraint.SetConstraints(job.Constraints)
s.binPack.SetPriority(job.Priority)
}
func (s *SystemStack) Select(tg *structs.TaskGroup) (*RankedNode, *structs.Resources) {
// Reset the binpack selector and context
s.binPack.Reset()
s.ctx.Reset()
start := time.Now()
// Collect the constraints, drivers and resources required by each
// sub-task to aggregate the TaskGroup totals
constr := make([]*structs.Constraint, 0, len(tg.Constraints))
drivers := make(map[string]struct{})
size := new(structs.Resources)
constr = append(constr, tg.Constraints...)
for _, task := range tg.Tasks {
drivers[task.Driver] = struct{}{}
constr = append(constr, task.Constraints...)
size.Add(task.Resources)
}
// Update the parameters of iterators
s.taskGroupDrivers.SetDrivers(drivers)
s.taskGroupConstraint.SetConstraints(constr)
s.binPack.SetTasks(tg.Tasks)
// Get the next option that satisfies the constraints.
option := s.binPack.Next()
// Ensure that the task resources were specified
if option != nil && len(option.TaskResources) != len(tg.Tasks) {
for _, task := range tg.Tasks {
option.SetTaskResources(task, task.Resources)
}
}
// Store the compute time
s.ctx.Metrics().AllocationTime = time.Since(start)
return option, size
}

View File

@@ -207,3 +207,205 @@ func TestServiceStack_Select_BinPack_Overflow(t *testing.T) {
t.Fatalf("bad: %#v", met)
}
}
func TestSystemStack_SetNodes(t *testing.T) {
_, ctx := testContext(t)
stack := NewSystemStack(ctx, nil)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
mock.Node(),
mock.Node(),
mock.Node(),
mock.Node(),
mock.Node(),
mock.Node(),
}
stack.SetNodes(nodes)
out := collectFeasible(stack.source)
if !reflect.DeepEqual(out, nodes) {
t.Fatalf("bad: %#v", out)
}
}
func TestSystemStack_SetJob(t *testing.T) {
_, ctx := testContext(t)
stack := NewSystemStack(ctx, nil)
job := mock.Job()
stack.SetJob(job)
if stack.binPack.priority != job.Priority {
t.Fatalf("bad")
}
if !reflect.DeepEqual(stack.jobConstraint.constraints, job.Constraints) {
t.Fatalf("bad")
}
}
func TestSystemStack_Select_Size(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
}
stack := NewSystemStack(ctx, nodes)
job := mock.Job()
stack.SetJob(job)
node, size := stack.Select(job.TaskGroups[0])
if node == nil {
t.Fatalf("missing node %#v", ctx.Metrics())
}
if size == nil {
t.Fatalf("missing size")
}
if size.CPU != 500 || size.MemoryMB != 256 {
t.Fatalf("bad: %#v", size)
}
met := ctx.Metrics()
if met.AllocationTime == 0 {
t.Fatalf("missing time")
}
}
func TestSystemStack_Select_MetricsReset(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
mock.Node(),
mock.Node(),
}
stack := NewSystemStack(ctx, nodes)
job := mock.Job()
stack.SetJob(job)
n1, _ := stack.Select(job.TaskGroups[0])
m1 := ctx.Metrics()
if n1 == nil {
t.Fatalf("missing node %#v", m1)
}
if m1.NodesEvaluated != 1 {
t.Fatalf("should only be 1")
}
n2, _ := stack.Select(job.TaskGroups[0])
m2 := ctx.Metrics()
if n2 == nil {
t.Fatalf("missing node %#v", m2)
}
// If we don't reset, this would be 2
if m2.NodesEvaluated != 1 {
t.Fatalf("should only be 2")
}
}
func TestSystemStack_Select_DriverFilter(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
}
zero := nodes[0]
zero.Attributes["driver.foo"] = "1"
stack := NewSystemStack(ctx, nodes)
job := mock.Job()
job.TaskGroups[0].Tasks[0].Driver = "foo"
stack.SetJob(job)
node, _ := stack.Select(job.TaskGroups[0])
if node == nil {
t.Fatalf("missing node %#v", ctx.Metrics())
}
if node.Node != zero {
t.Fatalf("bad")
}
zero.Attributes["driver.foo"] = "0"
stack = NewSystemStack(ctx, nodes)
stack.SetJob(job)
node, _ = stack.Select(job.TaskGroups[0])
if node != nil {
t.Fatalf("node not filtered %#v", node)
}
}
func TestSystemStack_Select_ConstraintFilter(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
}
zero := nodes[1]
zero.Attributes["kernel.name"] = "freebsd"
stack := NewSystemStack(ctx, nodes)
job := mock.Job()
job.Constraints[0].RTarget = "freebsd"
stack.SetJob(job)
node, _ := stack.Select(job.TaskGroups[0])
if node == nil {
t.Fatalf("missing node %#v", ctx.Metrics())
}
if node.Node != zero {
t.Fatalf("bad")
}
met := ctx.Metrics()
if met.NodesFiltered != 1 {
t.Fatalf("bad: %#v", met)
}
if met.ClassFiltered["linux-medium-pci"] != 1 {
t.Fatalf("bad: %#v", met)
}
if met.ConstraintFiltered["$attr.kernel.name = freebsd"] != 1 {
t.Fatalf("bad: %#v", met)
}
}
func TestSystemStack_Select_BinPack_Overflow(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
}
zero := nodes[0]
zero.Reserved = zero.Resources
one := nodes[1]
stack := NewSystemStack(ctx, nodes)
job := mock.Job()
stack.SetJob(job)
node, _ := stack.Select(job.TaskGroups[0])
if node == nil {
t.Fatalf("missing node %#v", ctx.Metrics())
}
if node.Node != one {
t.Fatalf("bad")
}
met := ctx.Metrics()
if met.NodesExhausted != 1 {
t.Fatalf("bad: %#v", met)
}
if met.ClassExhausted["linux-medium-pci"] != 1 {
t.Fatalf("bad: %#v", met)
}
if len(met.Scores) != 1 {
t.Fatalf("bad: %#v", met)
}
}

392
scheduler/system_sched.go Normal file
View File

@@ -0,0 +1,392 @@
package scheduler
import (
"fmt"
"log"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// maxSystemScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for system
// jobs.
maxSystemScheduleAttempts = 2
// allocNodeTainted is the status used when stopping an alloc because it's
// node is tainted.
allocNodeTainted = "system alloc not needed as node is tainted"
)
// SystemScheduler is used for 'system' jobs. This scheduler is
// designed for services that should be run on every client.
type SystemScheduler struct {
logger *log.Logger
state State
planner Planner
eval *structs.Evaluation
job *structs.Job
plan *structs.Plan
ctx *EvalContext
stack *SystemStack
nodes []*structs.Node
limitReached bool
nextEval *structs.Evaluation
}
// NewSystemScheduler is a factory function to instantiate a new system
// scheduler.
func NewSystemScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
return &SystemScheduler{
logger: logger,
state: state,
planner: planner,
}
}
// setStatus is used to update the status of the evaluation
func (s *SystemScheduler) setStatus(status, desc string) error {
s.logger.Printf("[DEBUG] sched: %#v: setting status to %s", s.eval, status)
newEval := s.eval.Copy()
newEval.Status = status
newEval.StatusDescription = desc
if s.nextEval != nil {
newEval.NextEval = s.nextEval.ID
}
return s.planner.UpdateEval(newEval)
}
// Process is used to handle a single evaluation.
func (s *SystemScheduler) Process(eval *structs.Evaluation) error {
// Store the evaluation
s.eval = eval
// Verify the evaluation trigger reason is understood
switch eval.TriggeredBy {
case structs.EvalTriggerJobRegister, structs.EvalTriggerNodeUpdate,
structs.EvalTriggerJobDeregister, structs.EvalTriggerRollingUpdate:
default:
desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason",
eval.TriggeredBy)
return s.setStatus(structs.EvalStatusFailed, desc)
}
// Retry up to the maxSystemScheduleAttempts
if err := retryMax(maxSystemScheduleAttempts, s.process); err != nil {
if statusErr, ok := err.(*SetStatusError); ok {
return s.setStatus(statusErr.EvalStatus, err.Error())
}
return err
}
// Update the status to complete
return s.setStatus(structs.EvalStatusComplete, "")
}
// process is wrapped in retryMax to iteratively run the handler until we have no
// further work or we've made the maximum number of attempts.
func (s *SystemScheduler) process() (bool, error) {
// Lookup the Job by ID
var err error
s.job, err = s.state.JobByID(s.eval.JobID)
if err != nil {
return false, fmt.Errorf("failed to get job '%s': %v",
s.eval.JobID, err)
}
// Get the ready nodes in the required datacenters
if s.job != nil {
s.nodes, err = readyNodesInDCs(s.state, s.job.Datacenters)
if err != nil {
return false, fmt.Errorf("failed to get ready nodes: %v", err)
}
}
// Create a plan
s.plan = s.eval.MakePlan(s.job)
// Create an evaluation context
s.ctx = NewEvalContext(s.state, s.plan, s.logger)
// Construct the placement stack
s.stack = NewSystemStack(s.ctx, nil)
if s.job != nil {
s.stack.SetJob(s.job)
}
// Compute the target job allocations
if err := s.computeJobAllocs(); err != nil {
s.logger.Printf("[ERR] sched: %#v: %v", s.eval, err)
return false, err
}
// If the plan is a no-op, we can bail
if s.plan.IsNoOp() {
return true, nil
}
// If the limit of placements was reached we need to create an evaluation
// to pickup from here after the stagger period.
if s.limitReached && s.nextEval == nil {
s.nextEval = s.eval.NextRollingEval(s.job.Update.Stagger)
if err := s.planner.CreateEval(s.nextEval); err != nil {
s.logger.Printf("[ERR] sched: %#v failed to make next eval for rolling update: %v", s.eval, err)
return false, err
}
s.logger.Printf("[DEBUG] sched: %#v: rolling update limit reached, next eval '%s' created", s.eval, s.nextEval.ID)
}
// Submit the plan
result, newState, err := s.planner.SubmitPlan(s.plan)
if err != nil {
return false, err
}
// If we got a state refresh, try again since we have stale data
if newState != nil {
s.logger.Printf("[DEBUG] sched: %#v: refresh forced", s.eval)
s.state = newState
return false, nil
}
// Try again if the plan was not fully committed, potential conflict
fullCommit, expected, actual := result.FullCommit(s.plan)
if !fullCommit {
s.logger.Printf("[DEBUG] sched: %#v: attempted %d placements, %d placed",
s.eval, expected, actual)
return false, nil
}
// Success!
return true, nil
}
// computeJobAllocs is used to reconcile differences between the job,
// existing allocations and node status to update the allocations.
func (s *SystemScheduler) computeJobAllocs() error {
// Materialize all the task groups per node.
var groups map[string]*structs.TaskGroup
if s.job != nil {
groups = materializeSystemTaskGroups(s.job, s.nodes)
}
// Lookup the allocations by JobID
allocs, err := s.state.AllocsByJob(s.eval.JobID)
if err != nil {
return fmt.Errorf("failed to get allocs for job '%s': %v",
s.eval.JobID, err)
}
// Filter out the allocations in a terminal state
allocs = structs.FilterTerminalAllocs(allocs)
// Determine the tainted nodes containing job allocs
tainted, err := taintedNodes(s.state, allocs)
if err != nil {
return fmt.Errorf("failed to get tainted nodes for job '%s': %v",
s.eval.JobID, err)
}
// Diff the required and existing allocations
diff := diffAllocs(s.job, tainted, groups, allocs)
s.logger.Printf("[DEBUG] sched: %#v: %#v", s.eval, diff)
// Add all the allocs to stop
for _, e := range diff.stop {
s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocNotNeeded)
}
// Also stop all the allocs that are marked as needing migrating. This
// allows failed nodes to be properly GC'd.
for _, e := range diff.migrate {
s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocNodeTainted)
}
// Attempt to do the upgrades in place
diff.update = s.inplaceUpdate(diff.update)
// Check if a rolling upgrade strategy is being used
limit := len(diff.update)
if s.job != nil && s.job.Update.Rolling() {
limit = s.job.Update.MaxParallel
}
// Treat non in-place updates as an eviction and new placement.
s.evictAndPlace(diff, diff.update, allocUpdating, &limit)
// Nothing remaining to do if placement is not required
if len(diff.place) == 0 {
return nil
}
// Compute the placements
return s.computePlacements(diff.place)
}
// evictAndPlace is used to mark allocations for evicts and add them to the placement queue
func (s *SystemScheduler) evictAndPlace(diff *diffResult, allocs []allocTuple, desc string, limit *int) {
n := len(allocs)
for i := 0; i < n && i < *limit; i++ {
a := allocs[i]
s.plan.AppendUpdate(a.Alloc, structs.AllocDesiredStatusStop, desc)
diff.place = append(diff.place, a)
}
if n <= *limit {
*limit -= n
} else {
*limit = 0
s.limitReached = true
}
}
// inplaceUpdate attempts to update allocations in-place where possible.
func (s *SystemScheduler) inplaceUpdate(updates []allocTuple) []allocTuple {
n := len(updates)
inplace := 0
for i := 0; i < n; i++ {
// Get the update
update := updates[i]
// Check if the task drivers or config has changed, requires
// a rolling upgrade since that cannot be done in-place.
existing := update.Alloc.Job.LookupTaskGroup(update.TaskGroup.Name)
if tasksUpdated(update.TaskGroup, existing) {
continue
}
// Get the existing node
node, err := s.state.NodeByID(update.Alloc.NodeID)
if err != nil {
s.logger.Printf("[ERR] sched: %#v failed to get node '%s': %v",
s.eval, update.Alloc.NodeID, err)
continue
}
if node == nil {
continue
}
// Set the existing node as the base set
s.stack.SetNodes([]*structs.Node{node})
// Stage an eviction of the current allocation
s.plan.AppendUpdate(update.Alloc, structs.AllocDesiredStatusStop,
allocInPlace)
// Attempt to match the task group
option, size := s.stack.Select(update.TaskGroup)
// Pop the allocation
s.plan.PopUpdate(update.Alloc)
// Skip if we could not do an in-place update
if option == nil {
continue
}
// Restore the network offers from the existing allocation.
// We do not allow network resources (reserved/dynamic ports)
// to be updated. This is guarded in taskUpdated, so we can
// safely restore those here.
for task, resources := range option.TaskResources {
existing := update.Alloc.TaskResources[task]
resources.Networks = existing.Networks
}
// Create a shallow copy
newAlloc := new(structs.Allocation)
*newAlloc = *update.Alloc
// Update the allocation
newAlloc.EvalID = s.eval.ID
newAlloc.Job = s.job
newAlloc.Resources = size
newAlloc.TaskResources = option.TaskResources
newAlloc.Metrics = s.ctx.Metrics()
newAlloc.DesiredStatus = structs.AllocDesiredStatusRun
newAlloc.ClientStatus = structs.AllocClientStatusPending
s.plan.AppendAlloc(newAlloc)
// Remove this allocation from the slice
updates[i] = updates[n-1]
i--
n--
inplace++
}
if len(updates) > 0 {
s.logger.Printf("[DEBUG] sched: %#v: %d in-place updates of %d", s.eval, inplace, len(updates))
}
return updates[:n]
}
// computePlacements computes placements for allocations
func (s *SystemScheduler) computePlacements(place []allocTuple) error {
nodeByID := make(map[string]*structs.Node, len(s.nodes))
for _, node := range s.nodes {
nodeByID[node.ID] = node
}
// Track the failed task groups so that we can coalesce
// the failures together to avoid creating many failed allocs.
failedTG := make(map[*structs.TaskGroup]*structs.Allocation)
nodes := make([]*structs.Node, 1)
for _, missing := range place {
// Get the node by looking at the name in the task group.
nodeID, err := extractTaskGroupId(missing.Name)
if err != nil {
s.logger.Printf("[ERR] sched: %#v failed to parse node id from %q: %v",
s.eval, missing.Name, err)
return err
}
node, ok := nodeByID[nodeID]
if !ok {
return fmt.Errorf("could not find node %q", nodeID)
}
// Update the set of placement ndoes
nodes[0] = node
s.stack.SetNodes(nodes)
// Attempt to match the task group
option, size := s.stack.Select(missing.TaskGroup)
if option == nil {
// Check if this task group has already failed
if alloc, ok := failedTG[missing.TaskGroup]; ok {
alloc.Metrics.CoalescedFailures += 1
continue
}
}
// Create an allocation for this
alloc := &structs.Allocation{
ID: structs.GenerateUUID(),
EvalID: s.eval.ID,
Name: missing.Name,
JobID: s.job.ID,
Job: s.job,
TaskGroup: missing.TaskGroup.Name,
Resources: size,
Metrics: s.ctx.Metrics(),
}
// Set fields based on if we found an allocation option
if option != nil {
alloc.NodeID = option.Node.ID
alloc.TaskResources = option.TaskResources
alloc.DesiredStatus = structs.AllocDesiredStatusRun
alloc.ClientStatus = structs.AllocClientStatusPending
s.plan.AppendAlloc(alloc)
} else {
alloc.DesiredStatus = structs.AllocDesiredStatusFailed
alloc.DesiredDescription = "failed to find a node for placement"
alloc.ClientStatus = structs.AllocClientStatusFailed
s.plan.AppendFailed(alloc)
failedTG[missing.TaskGroup] = alloc
}
}
return nil
}

View File

@@ -0,0 +1,651 @@
package scheduler
import (
"fmt"
"testing"
"time"
"github.com/hashicorp/nomad/nomad/mock"
"github.com/hashicorp/nomad/nomad/structs"
)
func TestSystemSched_JobRegister(t *testing.T) {
h := NewHarness(t)
// Create some nodes
for i := 0; i < 10; i++ {
node := mock.Node()
noErr(t, h.State.UpsertNode(h.NextIndex(), node))
}
// Create a job
job := mock.SystemJob()
noErr(t, h.State.UpsertJob(h.NextIndex(), job))
// Create a mock evaluation to deregister the job
eval := &structs.Evaluation{
ID: structs.GenerateUUID(),
Priority: job.Priority,
TriggeredBy: structs.EvalTriggerJobRegister,
JobID: job.ID,
}
// Process the evaluation
err := h.Process(NewSystemScheduler, eval)
if err != nil {
t.Fatalf("err: %v", err)
}
// Ensure a single plan
if len(h.Plans) != 1 {
t.Fatalf("bad: %#v", h.Plans)
}
plan := h.Plans[0]
// Ensure the plan allocated
var planned []*structs.Allocation
for _, allocList := range plan.NodeAllocation {
planned = append(planned, allocList...)
}
if len(planned) != 10 {
t.Fatalf("bad: %#v", plan)
}
// Lookup the allocations by JobID
out, err := h.State.AllocsByJob(job.ID)
noErr(t, err)
// Ensure all allocations placed
if len(out) != 10 {
t.Fatalf("bad: %#v", out)
}
h.AssertEvalStatus(t, structs.EvalStatusComplete)
}
func TestSystemSched_JobRegister_AddNode(t *testing.T) {
h := NewHarness(t)
// Create some nodes
var nodes []*structs.Node
for i := 0; i < 10; i++ {
node := mock.Node()
nodes = append(nodes, node)
noErr(t, h.State.UpsertNode(h.NextIndex(), node))
}
// Generate a fake job with allocations
job := mock.SystemJob()
noErr(t, h.State.UpsertJob(h.NextIndex(), job))
var allocs []*structs.Allocation
for _, node := range nodes {
alloc := mock.Alloc()
alloc.Job = job
alloc.JobID = job.ID
alloc.NodeID = node.ID
alloc.Name = fmt.Sprintf("my-job.web[%s]", node.ID)
allocs = append(allocs, alloc)
}
noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs))
// Add a new node.
node := mock.Node()
noErr(t, h.State.UpsertNode(h.NextIndex(), node))
// Create a mock evaluation to deal with the node update
eval := &structs.Evaluation{
ID: structs.GenerateUUID(),
Priority: 50,
TriggeredBy: structs.EvalTriggerNodeUpdate,
JobID: job.ID,
}
// Process the evaluation
err := h.Process(NewSystemScheduler, eval)
if err != nil {
t.Fatalf("err: %v", err)
}
// Ensure a single plan
if len(h.Plans) != 1 {
t.Fatalf("bad: %#v", h.Plans)
}
plan := h.Plans[0]
// Ensure the plan had no node updates
var update []*structs.Allocation
for _, updateList := range plan.NodeUpdate {
update = append(update, updateList...)
}
if len(update) != 0 {
t.Fatalf("bad: %#v", plan)
}
// Ensure the plan allocated on the new node
var planned []*structs.Allocation
for _, allocList := range plan.NodeAllocation {
planned = append(planned, allocList...)
}
if len(planned) != 1 {
t.Fatalf("bad: %#v", plan)
}
// Ensure it allocated on the right node
if _, ok := plan.NodeAllocation[node.ID]; !ok {
t.Fatalf("allocated on wrong node: %#v", plan)
}
// Lookup the allocations by JobID
out, err := h.State.AllocsByJob(job.ID)
noErr(t, err)
// Ensure all allocations placed
out = structs.FilterTerminalAllocs(out)
if len(out) != 11 {
t.Fatalf("bad: %#v", out)
}
h.AssertEvalStatus(t, structs.EvalStatusComplete)
}
func TestSystemSched_JobRegister_AllocFail(t *testing.T) {
h := NewHarness(t)
// Create NO nodes
// Create a job
job := mock.SystemJob()
noErr(t, h.State.UpsertJob(h.NextIndex(), job))
// Create a mock evaluation to register the job
eval := &structs.Evaluation{
ID: structs.GenerateUUID(),
Priority: job.Priority,
TriggeredBy: structs.EvalTriggerJobRegister,
JobID: job.ID,
}
// Process the evaluation
err := h.Process(NewSystemScheduler, eval)
if err != nil {
t.Fatalf("err: %v", err)
}
// Ensure no plan as this should be a no-op.
if len(h.Plans) != 0 {
t.Fatalf("bad: %#v", h.Plans)
}
h.AssertEvalStatus(t, structs.EvalStatusComplete)
}
func TestSystemSched_JobModify(t *testing.T) {
h := NewHarness(t)
// Create some nodes
var nodes []*structs.Node
for i := 0; i < 10; i++ {
node := mock.Node()
nodes = append(nodes, node)
noErr(t, h.State.UpsertNode(h.NextIndex(), node))
}
// Generate a fake job with allocations
job := mock.SystemJob()
noErr(t, h.State.UpsertJob(h.NextIndex(), job))
var allocs []*structs.Allocation
for _, node := range nodes {
alloc := mock.Alloc()
alloc.Job = job
alloc.JobID = job.ID
alloc.NodeID = node.ID
alloc.Name = fmt.Sprintf("my-job.web[%s]", node.ID)
allocs = append(allocs, alloc)
}
noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs))
// Add a few terminal status allocations, these should be ignored
var terminal []*structs.Allocation
for i := 0; i < 5; i++ {
alloc := mock.Alloc()
alloc.Job = job
alloc.JobID = job.ID
alloc.NodeID = nodes[i].ID
alloc.Name = fmt.Sprintf("my-job.web[%s]", nodes[i].ID)
alloc.DesiredStatus = structs.AllocDesiredStatusFailed
terminal = append(terminal, alloc)
}
noErr(t, h.State.UpsertAllocs(h.NextIndex(), terminal))
// Update the job
job2 := mock.SystemJob()
job2.ID = job.ID
// Update the task, such that it cannot be done in-place
job2.TaskGroups[0].Tasks[0].Config["command"] = "/bin/other"
noErr(t, h.State.UpsertJob(h.NextIndex(), job2))
// Create a mock evaluation to deal with drain
eval := &structs.Evaluation{
ID: structs.GenerateUUID(),
Priority: 50,
TriggeredBy: structs.EvalTriggerJobRegister,
JobID: job.ID,
}
// Process the evaluation
err := h.Process(NewSystemScheduler, eval)
if err != nil {
t.Fatalf("err: %v", err)
}
// Ensure a single plan
if len(h.Plans) != 1 {
t.Fatalf("bad: %#v", h.Plans)
}
plan := h.Plans[0]
// Ensure the plan evicted all allocs
var update []*structs.Allocation
for _, updateList := range plan.NodeUpdate {
update = append(update, updateList...)
}
if len(update) != len(allocs) {
t.Fatalf("bad: %#v", plan)
}
// Ensure the plan allocated
var planned []*structs.Allocation
for _, allocList := range plan.NodeAllocation {
planned = append(planned, allocList...)
}
if len(planned) != 10 {
t.Fatalf("bad: %#v", plan)
}
// Lookup the allocations by JobID
out, err := h.State.AllocsByJob(job.ID)
noErr(t, err)
// Ensure all allocations placed
out = structs.FilterTerminalAllocs(out)
if len(out) != 10 {
t.Fatalf("bad: %#v", out)
}
h.AssertEvalStatus(t, structs.EvalStatusComplete)
}
func TestSystemSched_JobModify_Rolling(t *testing.T) {
h := NewHarness(t)
// Create some nodes
var nodes []*structs.Node
for i := 0; i < 10; i++ {
node := mock.Node()
nodes = append(nodes, node)
noErr(t, h.State.UpsertNode(h.NextIndex(), node))
}
// Generate a fake job with allocations
job := mock.SystemJob()
noErr(t, h.State.UpsertJob(h.NextIndex(), job))
var allocs []*structs.Allocation
for _, node := range nodes {
alloc := mock.Alloc()
alloc.Job = job
alloc.JobID = job.ID
alloc.NodeID = node.ID
alloc.Name = fmt.Sprintf("my-job.web[%s]", node.ID)
allocs = append(allocs, alloc)
}
noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs))
// Update the job
job2 := mock.SystemJob()
job2.ID = job.ID
job2.Update = structs.UpdateStrategy{
Stagger: 30 * time.Second,
MaxParallel: 5,
}
// Update the task, such that it cannot be done in-place
job2.TaskGroups[0].Tasks[0].Config["command"] = "/bin/other"
noErr(t, h.State.UpsertJob(h.NextIndex(), job2))
// Create a mock evaluation to deal with drain
eval := &structs.Evaluation{
ID: structs.GenerateUUID(),
Priority: 50,
TriggeredBy: structs.EvalTriggerJobRegister,
JobID: job.ID,
}
// Process the evaluation
err := h.Process(NewSystemScheduler, eval)
if err != nil {
t.Fatalf("err: %v", err)
}
// Ensure a single plan
if len(h.Plans) != 1 {
t.Fatalf("bad: %#v", h.Plans)
}
plan := h.Plans[0]
// Ensure the plan evicted only MaxParallel
var update []*structs.Allocation
for _, updateList := range plan.NodeUpdate {
update = append(update, updateList...)
}
if len(update) != job2.Update.MaxParallel {
t.Fatalf("bad: %#v", plan)
}
// Ensure the plan allocated
var planned []*structs.Allocation
for _, allocList := range plan.NodeAllocation {
planned = append(planned, allocList...)
}
if len(planned) != job2.Update.MaxParallel {
t.Fatalf("bad: %#v", plan)
}
h.AssertEvalStatus(t, structs.EvalStatusComplete)
// Ensure a follow up eval was created
eval = h.Evals[0]
if eval.NextEval == "" {
t.Fatalf("missing next eval")
}
// Check for create
if len(h.CreateEvals) == 0 {
t.Fatalf("missing created eval")
}
create := h.CreateEvals[0]
if eval.NextEval != create.ID {
t.Fatalf("ID mismatch")
}
if create.PreviousEval != eval.ID {
t.Fatalf("missing previous eval")
}
if create.TriggeredBy != structs.EvalTriggerRollingUpdate {
t.Fatalf("bad: %#v", create)
}
}
func TestSystemSched_JobModify_InPlace(t *testing.T) {
h := NewHarness(t)
// Create some nodes
var nodes []*structs.Node
for i := 0; i < 10; i++ {
node := mock.Node()
nodes = append(nodes, node)
noErr(t, h.State.UpsertNode(h.NextIndex(), node))
}
// Generate a fake job with allocations
job := mock.SystemJob()
noErr(t, h.State.UpsertJob(h.NextIndex(), job))
var allocs []*structs.Allocation
for _, node := range nodes {
alloc := mock.Alloc()
alloc.Job = job
alloc.JobID = job.ID
alloc.NodeID = node.ID
alloc.Name = fmt.Sprintf("my-job.web[%s]", node.ID)
allocs = append(allocs, alloc)
}
noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs))
// Update the job
job2 := mock.SystemJob()
job2.ID = job.ID
noErr(t, h.State.UpsertJob(h.NextIndex(), job2))
// Create a mock evaluation to deal with drain
eval := &structs.Evaluation{
ID: structs.GenerateUUID(),
Priority: 50,
TriggeredBy: structs.EvalTriggerJobRegister,
JobID: job.ID,
}
// Process the evaluation
err := h.Process(NewSystemScheduler, eval)
if err != nil {
t.Fatalf("err: %v", err)
}
// Ensure a single plan
if len(h.Plans) != 1 {
t.Fatalf("bad: %#v", h.Plans)
}
plan := h.Plans[0]
// Ensure the plan did not evict any allocs
var update []*structs.Allocation
for _, updateList := range plan.NodeUpdate {
update = append(update, updateList...)
}
if len(update) != 0 {
t.Fatalf("bad: %#v", plan)
}
// Ensure the plan updated the existing allocs
var planned []*structs.Allocation
for _, allocList := range plan.NodeAllocation {
planned = append(planned, allocList...)
}
if len(planned) != 10 {
t.Fatalf("bad: %#v", plan)
}
for _, p := range planned {
if p.Job != job2 {
t.Fatalf("should update job")
}
}
// Lookup the allocations by JobID
out, err := h.State.AllocsByJob(job.ID)
noErr(t, err)
// Ensure all allocations placed
if len(out) != 10 {
t.Fatalf("bad: %#v", out)
}
h.AssertEvalStatus(t, structs.EvalStatusComplete)
// Verify the network did not change
for _, alloc := range out {
for _, resources := range alloc.TaskResources {
if resources.Networks[0].ReservedPorts[0] != 5000 {
t.Fatalf("bad: %#v", alloc)
}
}
}
}
func TestSystemSched_JobDeregister(t *testing.T) {
h := NewHarness(t)
// Create some nodes
var nodes []*structs.Node
for i := 0; i < 10; i++ {
node := mock.Node()
nodes = append(nodes, node)
noErr(t, h.State.UpsertNode(h.NextIndex(), node))
}
// Generate a fake job with allocations
job := mock.SystemJob()
var allocs []*structs.Allocation
for _, node := range nodes {
alloc := mock.Alloc()
alloc.Job = job
alloc.JobID = job.ID
alloc.NodeID = node.ID
alloc.Name = fmt.Sprintf("my-job.web[%s]", node.ID)
allocs = append(allocs, alloc)
}
noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs))
// Create a mock evaluation to deregister the job
eval := &structs.Evaluation{
ID: structs.GenerateUUID(),
Priority: 50,
TriggeredBy: structs.EvalTriggerJobDeregister,
JobID: job.ID,
}
// Process the evaluation
err := h.Process(NewSystemScheduler, eval)
if err != nil {
t.Fatalf("err: %v", err)
}
// Ensure a single plan
if len(h.Plans) != 1 {
t.Fatalf("bad: %#v", h.Plans)
}
plan := h.Plans[0]
// Ensure the plan evicted the job from all nodes.
for _, node := range nodes {
if len(plan.NodeUpdate[node.ID]) != 1 {
t.Fatalf("bad: %#v", plan)
}
}
// Lookup the allocations by JobID
out, err := h.State.AllocsByJob(job.ID)
noErr(t, err)
// Ensure no remaining allocations
out = structs.FilterTerminalAllocs(out)
if len(out) != 0 {
t.Fatalf("bad: %#v", out)
}
h.AssertEvalStatus(t, structs.EvalStatusComplete)
}
func TestSystemSched_NodeDrain(t *testing.T) {
h := NewHarness(t)
// Register a draining node
node := mock.Node()
node.Drain = true
noErr(t, h.State.UpsertNode(h.NextIndex(), node))
// Generate a fake job allocated on that node.
job := mock.SystemJob()
noErr(t, h.State.UpsertJob(h.NextIndex(), job))
alloc := mock.Alloc()
alloc.Job = job
alloc.JobID = job.ID
alloc.NodeID = node.ID
alloc.Name = fmt.Sprintf("my-job.web[%s]", node.ID)
noErr(t, h.State.UpsertAllocs(h.NextIndex(), []*structs.Allocation{alloc}))
// Create a mock evaluation to deal with drain
eval := &structs.Evaluation{
ID: structs.GenerateUUID(),
Priority: 50,
TriggeredBy: structs.EvalTriggerNodeUpdate,
JobID: job.ID,
NodeID: node.ID,
}
// Process the evaluation
err := h.Process(NewSystemScheduler, eval)
if err != nil {
t.Fatalf("err: %v", err)
}
// Ensure a single plan
if len(h.Plans) != 1 {
t.Fatalf("bad: %#v", h.Plans)
}
plan := h.Plans[0]
// Ensure the plan evicted all allocs
if len(plan.NodeUpdate[node.ID]) != 1 {
t.Fatalf("bad: %#v", plan)
}
// Ensure the plan updated the allocation.
var planned []*structs.Allocation
for _, allocList := range plan.NodeUpdate {
planned = append(planned, allocList...)
}
if len(planned) != 1 {
t.Log(len(planned))
t.Fatalf("bad: %#v", plan)
}
// Lookup the allocations by JobID
out, err := h.State.AllocsByJob(job.ID)
noErr(t, err)
// Ensure the allocations is stopped
if planned[0].DesiredStatus != structs.AllocDesiredStatusStop {
t.Fatalf("bad: %#v", out)
}
h.AssertEvalStatus(t, structs.EvalStatusComplete)
}
func TestSystemSched_RetryLimit(t *testing.T) {
h := NewHarness(t)
h.Planner = &RejectPlan{h}
// Create some nodes
for i := 0; i < 10; i++ {
node := mock.Node()
noErr(t, h.State.UpsertNode(h.NextIndex(), node))
}
// Create a job
job := mock.SystemJob()
noErr(t, h.State.UpsertJob(h.NextIndex(), job))
// Create a mock evaluation to deregister the job
eval := &structs.Evaluation{
ID: structs.GenerateUUID(),
Priority: job.Priority,
TriggeredBy: structs.EvalTriggerJobRegister,
JobID: job.ID,
}
// Process the evaluation
err := h.Process(NewSystemScheduler, eval)
if err != nil {
t.Fatalf("err: %v", err)
}
// Ensure multiple plans
if len(h.Plans) == 0 {
t.Fatalf("bad: %#v", h.Plans)
}
// Lookup the allocations by JobID
out, err := h.State.AllocsByJob(job.ID)
noErr(t, err)
// Ensure no allocations placed
if len(out) != 0 {
t.Fatalf("bad: %#v", out)
}
// Should hit the retry limit
h.AssertEvalStatus(t, structs.EvalStatusFailed)
}

View File

@@ -4,10 +4,16 @@ import (
"fmt"
"math/rand"
"reflect"
"regexp"
"github.com/hashicorp/nomad/nomad/structs"
)
var (
// Regex to capture the identifier of a task group name.
taskGroupID = regexp.MustCompile(`.+\..+\[(.*)\]`)
)
// allocTuple is a tuple of the allocation name and potential alloc ID
type allocTuple struct {
Name string
@@ -28,6 +34,32 @@ func materializeTaskGroups(job *structs.Job) map[string]*structs.TaskGroup {
return out
}
// materializeSystemTaskGroups is used to materialize all the task groups
// a system job requires. This is used to do the node expansion.
func materializeSystemTaskGroups(job *structs.Job, nodes []*structs.Node) map[string]*structs.TaskGroup {
out := make(map[string]*structs.TaskGroup)
for _, tg := range job.TaskGroups {
for _, node := range nodes {
name := fmt.Sprintf("%s.%s[%s]", job.Name, tg.Name, node.ID)
out[name] = tg
}
}
return out
}
// extractTaskGroupIdreturns the unique identifier for the task group
// name. It returns the id that distinguishes multiple instantiations of a task
// group. In the case of the system scheduler they will be the nodes name and
// otherwise it will be the tasks count.
func extractTaskGroupId(name string) (string, error) {
matches := taskGroupID.FindStringSubmatch(name)
if len(matches) != 2 {
return "", fmt.Errorf("could not determine task group id from %v: %#v", name, matches)
}
return matches[1], nil
}
// diffResult is used to return the sets that result from the diff
type diffResult struct {
place, update, migrate, stop, ignore []allocTuple