Tim Gross 0213a36e45 fix deadlock in plan_apply (#13407)
The plan applier has to get a snapshot with a minimum index for the
plan it's working on in order to ensure consistency. Under heavy raft
loads, we can exceed the timeout. When this happens, we hit a bug
where the plan applier blocks waiting on the `indexCh` forever, and
all schedulers will block in `Plan.Submit`.

Closing the `indexCh` when the `asyncPlanWait` is done with it will
prevent the deadlock without impacting correctness of the previous
snapshot index.

This changeset includes the a PoC failing test that works by injecting
a large timeout into the state store. We need to turn this into a test
we can run normally without breaking the state store before we can
merge this PR.

Increase `snapshotMinIndex` timeout to 10s.
This timeout creates backpressure where any concurrent `Plan.Submit`
RPCs will block waiting for results. This sheds load across all
servers and gives raft some CPU to catch up, because schedulers won't
dequeue more work while waiting. Increase it to 10s based on
observations of large production clusters.
2022-06-23 12:06:27 -04:00
2022-04-19 10:37:46 -05:00
2022-06-21 06:01:23 -04:00
2018-03-11 18:40:53 +00:00
2022-06-06 11:58:17 -04:00
2022-03-23 11:35:27 -05:00
2022-06-23 12:06:27 -04:00
2022-04-19 10:37:46 -05:00
2022-05-24 16:29:47 -04:00
2018-02-14 14:47:43 -08:00
2021-10-01 10:14:28 -04:00
2022-05-24 16:33:30 -04:00
2015-06-01 12:21:00 +02:00
2015-06-01 13:46:21 +02:00

Nomad Build Status Discuss

HashiCorp Nomad logo

Nomad is a simple and flexible workload orchestrator to deploy and manage containers (docker, podman), non-containerized applications (executable, Java), and virtual machines (qemu) across on-prem and clouds at scale.

Nomad is supported on Linux, Windows, and macOS. A commercial version of Nomad, Nomad Enterprise, is also available.

Nomad provides several key features:

  • Deploy Containers and Legacy Applications: Nomads flexibility as an orchestrator enables an organization to run containers, legacy, and batch applications together on the same infrastructure. Nomad brings core orchestration benefits to legacy applications without needing to containerize via pluggable task drivers.

  • Simple & Reliable: Nomad runs as a single binary and is entirely self contained - combining resource management and scheduling into a single system. Nomad does not require any external services for storage or coordination. Nomad automatically handles application, node, and driver failures. Nomad is distributed and resilient, using leader election and state replication to provide high availability in the event of failures.

  • Device Plugins & GPU Support: Nomad offers built-in support for GPU workloads such as machine learning (ML) and artificial intelligence (AI). Nomad uses device plugins to automatically detect and utilize resources from hardware devices such as GPU, FPGAs, and TPUs.

  • Federation for Multi-Region, Multi-Cloud: Nomad was designed to support infrastructure at a global scale. Nomad supports federation out-of-the-box and can deploy applications across multiple regions and clouds.

  • Proven Scalability: Nomad is optimistically concurrent, which increases throughput and reduces latency for workloads. Nomad has been proven to scale to clusters of 10K+ nodes in real-world production environments.

  • HashiCorp Ecosystem: Nomad integrates seamlessly with Terraform, Consul, Vault for provisioning, service discovery, and secrets management.

Quick Start

Testing

See Learn: Getting Started for instructions on setting up a local Nomad cluster for non-production use.

Optionally, find Terraform manifests for bringing up a development Nomad cluster on a public cloud in the terraform directory.

Production

See Learn: Nomad Reference Architecture for recommended practices and a reference architecture for production deployments.

Documentation

Full, comprehensive documentation is available on the Nomad website: https://www.nomadproject.io/docs

Guides are available on HashiCorp Learn.

Contributing

See the contributing directory for more developer documentation.

Description
No description provided
Readme 380 MiB
Languages
Go 76.9%
MDX 11%
JavaScript 8.2%
Handlebars 1.7%
HCL 1.4%
Other 0.7%