Files
nomad/drivers/shared/executor/executor_linux.go
Seth Hoenig 591394fb62 drivers: plumb hardware topology via grpc into drivers (#18504)
* drivers: plumb hardware topology via grpc into drivers

This PR swaps out the temporary use of detecting system hardware manually
in each driver for using the Client's detected topology by plumbing the
data over gRPC. This ensures that Client configuration is taken to account
consistently in all references to system topology.

* cr: use enum instead of bool for core grade

* cr: fix test slit tables to be possible
2023-09-18 08:58:07 -05:00

976 lines
28 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
//go:build linux
package executor
import (
"context"
"errors"
"fmt"
"io"
"os"
"os/exec"
"path"
"path/filepath"
"strings"
"syscall"
"time"
"github.com/armon/circbuf"
"github.com/hashicorp/consul-template/signals"
hclog "github.com/hashicorp/go-hclog"
"github.com/hashicorp/go-set"
"github.com/hashicorp/nomad/client/allocdir"
"github.com/hashicorp/nomad/client/lib/cgroupslib"
"github.com/hashicorp/nomad/client/lib/cpustats"
cstructs "github.com/hashicorp/nomad/client/structs"
"github.com/hashicorp/nomad/drivers/shared/capabilities"
"github.com/hashicorp/nomad/drivers/shared/executor/procstats"
"github.com/hashicorp/nomad/helper/uuid"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/hashicorp/nomad/plugins/drivers"
"github.com/opencontainers/runc/libcontainer"
"github.com/opencontainers/runc/libcontainer/cgroups"
runc "github.com/opencontainers/runc/libcontainer/configs"
"github.com/opencontainers/runc/libcontainer/devices"
ldevices "github.com/opencontainers/runc/libcontainer/devices"
"github.com/opencontainers/runc/libcontainer/specconv"
lutils "github.com/opencontainers/runc/libcontainer/utils"
"github.com/opencontainers/runtime-spec/specs-go"
"golang.org/x/sys/unix"
)
var (
// ExecutorCgroupV1MeasuredMemStats is the list of memory stats captured by the executor with cgroup-v1
ExecutorCgroupV1MeasuredMemStats = []string{"RSS", "Cache", "Swap", "Usage", "Max Usage", "Kernel Usage", "Kernel Max Usage"}
// ExecutorCgroupV2MeasuredMemStats is the list of memory stats captured by the executor with cgroup-v2. cgroup-v2 exposes different memory stats and no longer reports rss or max usage.
ExecutorCgroupV2MeasuredMemStats = []string{"Cache", "Swap", "Usage"}
// ExecutorCgroupMeasuredCpuStats is the list of CPU stats captures by the executor
ExecutorCgroupMeasuredCpuStats = []string{"System Mode", "User Mode", "Throttled Periods", "Throttled Time", "Percent"}
)
// LibcontainerExecutor implements an Executor with the runc/libcontainer api
type LibcontainerExecutor struct {
id string
command *ExecCommand
logger hclog.Logger
compute cpustats.Compute
totalCpuStats *cpustats.Tracker
userCpuStats *cpustats.Tracker
systemCpuStats *cpustats.Tracker
processStats procstats.ProcessStats
container libcontainer.Container
userProc *libcontainer.Process
userProcExited chan interface{}
exitState *ProcessState
}
func NewExecutorWithIsolation(logger hclog.Logger, compute cpustats.Compute) Executor {
le := &LibcontainerExecutor{
id: strings.ReplaceAll(uuid.Generate(), "-", "_"),
logger: logger.Named("isolated_executor"),
compute: compute,
totalCpuStats: cpustats.New(compute),
userCpuStats: cpustats.New(compute),
systemCpuStats: cpustats.New(compute),
}
le.processStats = procstats.New(compute, le)
return le
}
func (l *LibcontainerExecutor) ListProcesses() *set.Set[int] {
return procstats.List(l.command)
}
// Launch creates a new container in libcontainer and starts a new process with it
func (l *LibcontainerExecutor) Launch(command *ExecCommand) (*ProcessState, error) {
l.logger.Trace("preparing to launch command", "command", command.Cmd, "args", strings.Join(command.Args, " "))
if command.Resources == nil {
command.Resources = &drivers.Resources{
NomadResources: &structs.AllocatedTaskResources{},
}
}
l.command = command
// create a new factory which will store the container state in the allocDir
factory, err := libcontainer.New(
path.Join(command.TaskDir, "../alloc/container"),
// note that os.Args[0] refers to the executor shim typically
// and first args arguments is ignored now due
// until https://github.com/opencontainers/runc/pull/1888 is merged
libcontainer.InitArgs(os.Args[0], "libcontainer-shim"),
)
if err != nil {
return nil, fmt.Errorf("failed to create factory: %v", err)
}
// A container groups processes under the same isolation enforcement
containerCfg, err := l.newLibcontainerConfig(command)
if err != nil {
return nil, fmt.Errorf("failed to configure container(%s): %v", l.id, err)
}
container, err := factory.Create(l.id, containerCfg)
if err != nil {
return nil, fmt.Errorf("failed to create container(%s): %v", l.id, err)
}
l.container = container
// Look up the binary path and make it executable
taskPath, hostPath, err := lookupTaskBin(command)
if err != nil {
return nil, err
}
if err := makeExecutable(hostPath); err != nil {
return nil, err
}
combined := append([]string{taskPath}, command.Args...)
stdout, err := command.Stdout()
if err != nil {
return nil, err
}
stderr, err := command.Stderr()
if err != nil {
return nil, err
}
l.logger.Debug("launching", "command", command.Cmd, "args", strings.Join(command.Args, " "))
// the task process will be started by the container
process := &libcontainer.Process{
Args: combined,
Env: command.Env,
Stdout: stdout,
Stderr: stderr,
Init: true,
}
if command.User != "" {
process.User = command.User
}
l.userProc = process
l.totalCpuStats = cpustats.New(l.compute)
l.userCpuStats = cpustats.New(l.compute)
l.systemCpuStats = cpustats.New(l.compute)
// Starts the task
if err := container.Run(process); err != nil {
container.Destroy()
return nil, err
}
pid, err := process.Pid()
if err != nil {
container.Destroy()
return nil, err
}
// start a goroutine to wait on the process to complete, so Wait calls can
// be multiplexed
l.userProcExited = make(chan interface{})
go l.wait()
return &ProcessState{
Pid: pid,
ExitCode: -1,
Time: time.Now(),
}, nil
}
// Wait waits until a process has exited and returns it's exitcode and errors
func (l *LibcontainerExecutor) Wait(ctx context.Context) (*ProcessState, error) {
select {
case <-ctx.Done():
return nil, ctx.Err()
case <-l.userProcExited:
return l.exitState, nil
}
}
func (l *LibcontainerExecutor) wait() {
defer close(l.userProcExited)
ps, err := l.userProc.Wait()
if err != nil {
// If the process has exited before we called wait an error is returned
// the process state is embedded in the error
if exitErr, ok := err.(*exec.ExitError); ok {
ps = exitErr.ProcessState
} else {
l.logger.Error("failed to call wait on user process", "error", err)
l.exitState = &ProcessState{Pid: 0, ExitCode: 1, Time: time.Now()}
return
}
}
l.command.Close()
exitCode := 1
var signal int
if status, ok := ps.Sys().(syscall.WaitStatus); ok {
exitCode = status.ExitStatus()
if status.Signaled() {
const exitSignalBase = 128
signal = int(status.Signal())
exitCode = exitSignalBase + signal
}
}
l.exitState = &ProcessState{
Pid: ps.Pid(),
ExitCode: exitCode,
Signal: signal,
Time: time.Now(),
}
}
// Shutdown stops all processes started and cleans up any resources
// created (such as mountpoints, devices, etc).
func (l *LibcontainerExecutor) Shutdown(signal string, grace time.Duration) error {
if l.container == nil {
return nil
}
status, err := l.container.Status()
if err != nil {
return err
}
defer l.container.Destroy()
if status == libcontainer.Stopped {
return nil
}
if grace > 0 {
if signal == "" {
signal = "SIGINT"
}
sig, ok := signals.SignalLookup[signal]
if !ok {
return fmt.Errorf("error unknown signal given for shutdown: %s", signal)
}
// Signal initial container processes only during graceful
// shutdown; hence `false` arg.
err = l.container.Signal(sig, false)
if err != nil {
return err
}
select {
case <-l.userProcExited:
return nil
case <-time.After(grace):
// Force kill all container processes after grace period,
// hence `true` argument.
if err := l.container.Signal(os.Kill, true); err != nil {
return err
}
}
} else {
err := l.container.Signal(os.Kill, true)
if err != nil {
l.logger.Info("no grace fail", "error", err)
return err
}
}
select {
case <-l.userProcExited:
return nil
case <-time.After(time.Second * 15):
return fmt.Errorf("process failed to exit after 15 seconds")
}
}
// UpdateResources updates the resource isolation with new values to be enforced
func (l *LibcontainerExecutor) UpdateResources(resources *drivers.Resources) error {
return nil
}
// Version returns the api version of the executor
func (l *LibcontainerExecutor) Version() (*ExecutorVersion, error) {
return &ExecutorVersion{Version: ExecutorVersionLatest}, nil
}
// Stats returns the resource statistics for processes managed by the executor
func (l *LibcontainerExecutor) Stats(ctx context.Context, interval time.Duration) (<-chan *cstructs.TaskResourceUsage, error) {
ch := make(chan *cstructs.TaskResourceUsage)
go l.handleStats(ch, ctx, interval)
return ch, nil
}
func (l *LibcontainerExecutor) handleStats(ch chan *cstructs.TaskResourceUsage, ctx context.Context, interval time.Duration) {
defer close(ch)
timer := time.NewTimer(0)
var measurableMemStats []string
switch cgroupslib.GetMode() {
case cgroupslib.CG1:
measurableMemStats = ExecutorCgroupV1MeasuredMemStats
case cgroupslib.CG2:
measurableMemStats = ExecutorCgroupV2MeasuredMemStats
}
for {
select {
case <-ctx.Done():
return
case <-timer.C:
timer.Reset(interval)
}
// the moment we collect this round of stats
ts := time.Now()
// get actual stats from the container
lstats, err := l.container.Stats()
if err != nil {
l.logger.Warn("error collecting stats", "error", err)
return
}
stats := lstats.CgroupStats
// get the map of process pids in this container
pstats := l.processStats.StatProcesses()
// Memory Related Stats
swap := stats.MemoryStats.SwapUsage
maxUsage := stats.MemoryStats.Usage.MaxUsage
rss := stats.MemoryStats.Stats["rss"]
cache := stats.MemoryStats.Stats["cache"]
mapped_file := stats.MemoryStats.Stats["mapped_file"]
ms := &cstructs.MemoryStats{
RSS: rss,
Cache: cache,
Swap: swap.Usage,
MappedFile: mapped_file,
Usage: stats.MemoryStats.Usage.Usage,
MaxUsage: maxUsage,
KernelUsage: stats.MemoryStats.KernelUsage.Usage,
KernelMaxUsage: stats.MemoryStats.KernelUsage.MaxUsage,
Measured: measurableMemStats,
}
// CPU Related Stats
totalProcessCPUUsage := float64(stats.CpuStats.CpuUsage.TotalUsage)
userModeTime := float64(stats.CpuStats.CpuUsage.UsageInUsermode)
kernelModeTime := float64(stats.CpuStats.CpuUsage.UsageInKernelmode)
totalPercent := l.totalCpuStats.Percent(totalProcessCPUUsage)
cs := &cstructs.CpuStats{
SystemMode: l.systemCpuStats.Percent(kernelModeTime),
UserMode: l.userCpuStats.Percent(userModeTime),
Percent: totalPercent,
ThrottledPeriods: stats.CpuStats.ThrottlingData.ThrottledPeriods,
ThrottledTime: stats.CpuStats.ThrottlingData.ThrottledTime,
TotalTicks: l.systemCpuStats.TicksConsumed(totalPercent),
Measured: ExecutorCgroupMeasuredCpuStats,
}
taskResUsage := cstructs.TaskResourceUsage{
ResourceUsage: &cstructs.ResourceUsage{
MemoryStats: ms,
CpuStats: cs,
},
Timestamp: ts.UTC().UnixNano(),
Pids: pstats,
}
select {
case <-ctx.Done():
return
case ch <- &taskResUsage:
}
}
}
// Signal sends a signal to the process managed by the executor
func (l *LibcontainerExecutor) Signal(s os.Signal) error {
return l.userProc.Signal(s)
}
// Exec starts an additional process inside the container
func (l *LibcontainerExecutor) Exec(deadline time.Time, cmd string, args []string) ([]byte, int, error) {
combined := append([]string{cmd}, args...)
// Capture output
buf, _ := circbuf.NewBuffer(int64(drivers.CheckBufSize))
process := &libcontainer.Process{
Args: combined,
Env: l.command.Env,
Stdout: buf,
Stderr: buf,
}
err := l.container.Run(process)
if err != nil {
return nil, 0, err
}
waitCh := make(chan *waitResult)
defer close(waitCh)
go l.handleExecWait(waitCh, process)
select {
case result := <-waitCh:
ps := result.ps
if result.err != nil {
if exitErr, ok := result.err.(*exec.ExitError); ok {
ps = exitErr.ProcessState
} else {
return nil, 0, result.err
}
}
var exitCode int
if status, ok := ps.Sys().(syscall.WaitStatus); ok {
exitCode = status.ExitStatus()
}
return buf.Bytes(), exitCode, nil
case <-time.After(time.Until(deadline)):
process.Signal(os.Kill)
return nil, 0, context.DeadlineExceeded
}
}
func (l *LibcontainerExecutor) newTerminalSocket() (pty func() (*os.File, error), tty *os.File, err error) {
parent, child, err := lutils.NewSockPair("socket")
if err != nil {
return nil, nil, fmt.Errorf("failed to create terminal: %v", err)
}
return func() (*os.File, error) { return lutils.RecvFd(parent) }, child, err
}
func (l *LibcontainerExecutor) ExecStreaming(ctx context.Context, cmd []string, tty bool,
stream drivers.ExecTaskStream) error {
// the task process will be started by the container
process := &libcontainer.Process{
Args: cmd,
Env: l.userProc.Env,
User: l.userProc.User,
Init: false,
Cwd: "/",
}
execHelper := &execHelper{
logger: l.logger,
newTerminal: l.newTerminalSocket,
setTTY: func(tty *os.File) error {
process.ConsoleSocket = tty
return nil
},
setIO: func(stdin io.Reader, stdout, stderr io.Writer) error {
process.Stdin = stdin
process.Stdout = stdout
process.Stderr = stderr
return nil
},
processStart: func() error { return l.container.Run(process) },
processWait: func() (*os.ProcessState, error) {
return process.Wait()
},
}
return execHelper.run(ctx, tty, stream)
}
type waitResult struct {
ps *os.ProcessState
err error
}
func (l *LibcontainerExecutor) handleExecWait(ch chan *waitResult, process *libcontainer.Process) {
ps, err := process.Wait()
ch <- &waitResult{ps, err}
}
func configureCapabilities(cfg *runc.Config, command *ExecCommand) {
switch command.User {
case "root":
// when running as root, use the legacy set of system capabilities, so
// that we do not break existing nomad clusters using this "feature"
legacyCaps := capabilities.LegacySupported().Slice(true)
cfg.Capabilities = &runc.Capabilities{
Bounding: legacyCaps,
Permitted: legacyCaps,
Effective: legacyCaps,
Ambient: nil,
Inheritable: nil,
}
default:
// otherwise apply the plugin + task capability configuration
//
// The capabilities must be set in the Ambient set as libcontainer
// performs `execve`` as an unprivileged user. Ambient also requires
// that capabilities are Permitted and Inheritable. Setting Effective
// is unnecessary, because we only need the capabilities to become
// effective _after_ execve, not before.
cfg.Capabilities = &runc.Capabilities{
Bounding: command.Capabilities,
Permitted: command.Capabilities,
Inheritable: command.Capabilities,
Ambient: command.Capabilities,
}
}
}
func configureNamespaces(pidMode, ipcMode string) runc.Namespaces {
namespaces := runc.Namespaces{{Type: runc.NEWNS}}
if pidMode == IsolationModePrivate {
namespaces = append(namespaces, runc.Namespace{Type: runc.NEWPID})
}
if ipcMode == IsolationModePrivate {
namespaces = append(namespaces, runc.Namespace{Type: runc.NEWIPC})
}
return namespaces
}
// configureIsolation prepares the isolation primitives of the container.
// The process runs in a container configured with the following:
//
// * the task directory as the chroot
// * dedicated mount points namespace, but shares the PID, User, domain, network namespaces with host
// * small subset of devices (e.g. stdout/stderr/stdin, tty, shm, pts); default to using the same set of devices as Docker
// * some special filesystems: `/proc`, `/sys`. Some case is given to avoid exec escaping or setting malicious values through them.
func configureIsolation(cfg *runc.Config, command *ExecCommand) error {
defaultMountFlags := syscall.MS_NOEXEC | syscall.MS_NOSUID | syscall.MS_NODEV
// set the new root directory for the container
cfg.Rootfs = command.TaskDir
// disable pivot_root if set in the driver's configuration
cfg.NoPivotRoot = command.NoPivotRoot
// set up default namespaces as configured
cfg.Namespaces = configureNamespaces(command.ModePID, command.ModeIPC)
if command.NetworkIsolation != nil {
cfg.Namespaces = append(cfg.Namespaces, runc.Namespace{
Type: runc.NEWNET,
Path: command.NetworkIsolation.Path,
})
}
// paths to mask using a bind mount to /dev/null to prevent reading
cfg.MaskPaths = []string{
"/proc/kcore",
"/sys/firmware",
}
// paths that should be remounted as readonly inside the container
cfg.ReadonlyPaths = []string{
"/proc/sys", "/proc/sysrq-trigger", "/proc/irq", "/proc/bus",
}
cfg.Devices = specconv.AllowedDevices
if len(command.Devices) > 0 {
devs, err := cmdDevices(command.Devices)
if err != nil {
return err
}
cfg.Devices = append(cfg.Devices, devs...)
}
cfg.Mounts = []*runc.Mount{
{
Source: "tmpfs",
Destination: "/dev",
Device: "tmpfs",
Flags: syscall.MS_NOSUID | syscall.MS_STRICTATIME,
Data: "mode=755",
},
{
Source: "proc",
Destination: "/proc",
Device: "proc",
Flags: defaultMountFlags,
},
{
Source: "devpts",
Destination: "/dev/pts",
Device: "devpts",
Flags: syscall.MS_NOSUID | syscall.MS_NOEXEC,
Data: "newinstance,ptmxmode=0666,mode=0620,gid=5",
},
{
Device: "tmpfs",
Source: "shm",
Destination: "/dev/shm",
Data: "mode=1777,size=65536k",
Flags: defaultMountFlags,
},
{
Source: "mqueue",
Destination: "/dev/mqueue",
Device: "mqueue",
Flags: defaultMountFlags,
},
{
Source: "sysfs",
Destination: "/sys",
Device: "sysfs",
Flags: defaultMountFlags | syscall.MS_RDONLY,
},
}
if len(command.Mounts) > 0 {
cfg.Mounts = append(cfg.Mounts, cmdMounts(command.Mounts)...)
}
return nil
}
func (l *LibcontainerExecutor) configureCgroups(cfg *runc.Config, command *ExecCommand) error {
// note: an alloc TR hook pre-creates the cgroup(s) in both v1 and v2
if !command.ResourceLimits {
return nil
}
cg := command.StatsCgroup()
if cg == "" {
return errors.New("cgroup must be set")
}
// // set the libcontainer hook for writing the PID to cgroup.procs file
// TODO: this can be cg1 only, right?
// l.configureCgroupHook(cfg, command)
// set the libcontainer memory limits
l.configureCgroupMemory(cfg, command)
// set cgroup v1/v2 specific attributes (cpu, path)
switch cgroupslib.GetMode() {
case cgroupslib.CG1:
return l.configureCG1(cfg, command, cg)
default:
return l.configureCG2(cfg, command, cg)
}
}
func (*LibcontainerExecutor) configureCgroupHook(cfg *runc.Config, command *ExecCommand) {
cfg.Hooks = runc.Hooks{
runc.CreateRuntime: runc.HookList{
newSetCPUSetCgroupHook(command.Resources.LinuxResources.CpusetCgroupPath),
},
}
}
func (l *LibcontainerExecutor) configureCgroupMemory(cfg *runc.Config, command *ExecCommand) {
// Total amount of memory allowed to consume
res := command.Resources.NomadResources
memHard, memSoft := res.Memory.MemoryMaxMB, res.Memory.MemoryMB
if memHard <= 0 {
memHard = res.Memory.MemoryMB
memSoft = 0
}
cfg.Cgroups.Resources.Memory = memHard * 1024 * 1024
cfg.Cgroups.Resources.MemoryReservation = memSoft * 1024 * 1024
// Disable swap if possible, to avoid issues on the machine
cfg.Cgroups.Resources.MemorySwappiness = cgroupslib.MaybeDisableMemorySwappiness()
}
func (l *LibcontainerExecutor) configureCG1(cfg *runc.Config, command *ExecCommand, cgroup string) error {
cpuShares := command.Resources.LinuxResources.CPUShares
cpusetPath := command.Resources.LinuxResources.CpusetCgroupPath
cpuCores := command.Resources.LinuxResources.CpusetCpus
// Set the v1 parent relative path (i.e. /nomad/<scope>) for the NON-cpuset cgroups
scope := filepath.Base(cgroup)
cfg.Cgroups.Path = filepath.Join("/", cgroupslib.NomadCgroupParent, scope)
// set cpu resources
cfg.Cgroups.Resources.CpuShares = uint64(cpuShares)
// we need to manually set the cpuset, because libcontainer will not set
// it for our special cpuset cgroup
if err := l.cpusetCG1(cpusetPath, cpuCores); err != nil {
return fmt.Errorf("failed to set cpuset: %w", err)
}
// tell libcontainer to write the pid to our special cpuset cgroup
l.configureCgroupHook(cfg, command)
return nil
}
func (l *LibcontainerExecutor) cpusetCG1(cpusetCgroupPath, cores string) error {
if cores == "" {
return nil
}
ed := cgroupslib.OpenPath(cpusetCgroupPath)
return ed.Write("cpuset.cpus", cores)
}
func (l *LibcontainerExecutor) configureCG2(cfg *runc.Config, command *ExecCommand, cg string) error {
cpuShares := command.Resources.LinuxResources.CPUShares
cpuCores := command.Resources.LinuxResources.CpusetCpus
// Set the v2 specific unified path
cfg.Cgroups.Resources.CpusetCpus = cpuCores
partition := cgroupslib.GetPartitionFromCores(cpuCores)
// sets cpu.weight, which the kernel also translates to cpu.weight.nice
// despite what the libcontainer docs say, this sets priority not bandwidth
cpuWeight := cgroups.ConvertCPUSharesToCgroupV2Value(uint64(cpuShares))
cfg.Cgroups.Resources.CpuWeight = cpuWeight
// finally set the path of the cgroup in which to run the task
scope := filepath.Base(cg)
cfg.Cgroups.Path = filepath.Join("/", cgroupslib.NomadCgroupParent, partition, scope)
// todo(shoenig): we will also want to set cpu bandwidth (i.e. cpu_hard_limit)
// hopefully for 1.7
return nil
}
func (l *LibcontainerExecutor) newLibcontainerConfig(command *ExecCommand) (*runc.Config, error) {
cfg := &runc.Config{
Cgroups: &runc.Cgroup{
Resources: &runc.Resources{
MemorySwappiness: nil,
},
},
Version: "1.0.0",
}
for _, device := range specconv.AllowedDevices {
cfg.Cgroups.Resources.Devices = append(cfg.Cgroups.Resources.Devices, &device.Rule)
}
configureCapabilities(cfg, command)
// children should not inherit Nomad agent oom_score_adj value
oomScoreAdj := 0
cfg.OomScoreAdj = &oomScoreAdj
if err := configureIsolation(cfg, command); err != nil {
return nil, err
}
if err := l.configureCgroups(cfg, command); err != nil {
return nil, err
}
return cfg, nil
}
// cmdDevices converts a list of driver.DeviceConfigs into excutor.Devices.
func cmdDevices(driverDevices []*drivers.DeviceConfig) ([]*devices.Device, error) {
if len(driverDevices) == 0 {
return nil, nil
}
r := make([]*devices.Device, len(driverDevices))
for i, d := range driverDevices {
ed, err := ldevices.DeviceFromPath(d.HostPath, d.Permissions)
if err != nil {
return nil, fmt.Errorf("failed to make device out for %s: %v", d.HostPath, err)
}
ed.Path = d.TaskPath
r[i] = ed
}
return r, nil
}
var userMountToUnixMount = map[string]int{
// Empty string maps to `rprivate` for backwards compatibility in restored
// older tasks, where mount propagation will not be present.
"": unix.MS_PRIVATE | unix.MS_REC, // rprivate
structs.VolumeMountPropagationPrivate: unix.MS_PRIVATE | unix.MS_REC, // rprivate
structs.VolumeMountPropagationHostToTask: unix.MS_SLAVE | unix.MS_REC, // rslave
structs.VolumeMountPropagationBidirectional: unix.MS_SHARED | unix.MS_REC, // rshared
}
// cmdMounts converts a list of driver.MountConfigs into excutor.Mounts.
func cmdMounts(mounts []*drivers.MountConfig) []*runc.Mount {
if len(mounts) == 0 {
return nil
}
r := make([]*runc.Mount, len(mounts))
for i, m := range mounts {
flags := unix.MS_BIND
if m.Readonly {
flags |= unix.MS_RDONLY
}
r[i] = &runc.Mount{
Source: m.HostPath,
Destination: m.TaskPath,
Device: "bind",
Flags: flags,
PropagationFlags: []int{userMountToUnixMount[m.PropagationMode]},
}
}
return r
}
// lookupTaskBin finds the file `bin`, searching in order:
// - taskDir/local
// - taskDir
// - each mount, in order listed in the jobspec
// - a PATH-like search of usr/local/bin/, usr/bin/, and bin/ inside the taskDir
//
// Returns an absolute path inside the container that will get passed as arg[0]
// to the launched process, and the absolute path to that binary as seen by the
// host (these will be identical for binaries that don't come from mounts).
//
// See also executor.lookupBin for a version used by non-isolated drivers.
func lookupTaskBin(command *ExecCommand) (string, string, error) {
taskDir := command.TaskDir
bin := command.Cmd
// Check in the local directory
localDir := filepath.Join(taskDir, allocdir.TaskLocal)
taskPath, hostPath, err := getPathInTaskDir(command.TaskDir, localDir, bin)
if err == nil {
return taskPath, hostPath, nil
}
// Check at the root of the task's directory
taskPath, hostPath, err = getPathInTaskDir(command.TaskDir, command.TaskDir, bin)
if err == nil {
return taskPath, hostPath, nil
}
// Check in our mounts
for _, mount := range command.Mounts {
taskPath, hostPath, err = getPathInMount(mount.HostPath, mount.TaskPath, bin)
if err == nil {
return taskPath, hostPath, nil
}
}
// If there's a / in the binary's path, we can't fallback to a PATH search
if strings.Contains(bin, "/") {
return "", "", fmt.Errorf("file %s not found under path %s", bin, taskDir)
}
// look for a file using a PATH-style lookup inside the directory
// root. Similar to the stdlib's exec.LookPath except:
// - uses a restricted lookup PATH rather than the agent process's PATH env var.
// - does not require that the file is already executable (this will be ensured
// by the caller)
// - does not prevent using relative path as added to exec.LookPath in go1.19
// (this gets fixed-up in the caller)
// This is a fake PATH so that we're not using the agent's PATH
restrictedPaths := []string{"/usr/local/bin", "/usr/bin", "/bin"}
for _, dir := range restrictedPaths {
pathDir := filepath.Join(command.TaskDir, dir)
taskPath, hostPath, err = getPathInTaskDir(command.TaskDir, pathDir, bin)
if err == nil {
return taskPath, hostPath, nil
}
}
return "", "", fmt.Errorf("file %s not found under path", bin)
}
// getPathInTaskDir searches for the binary in the task directory and nested
// search directory. It returns the absolute path rooted inside the container
// and the absolute path on the host.
func getPathInTaskDir(taskDir, searchDir, bin string) (string, string, error) {
hostPath := filepath.Join(searchDir, bin)
err := filepathIsRegular(hostPath)
if err != nil {
return "", "", err
}
// Find the path relative to the task directory
rel, err := filepath.Rel(taskDir, hostPath)
if rel == "" || err != nil {
return "", "", fmt.Errorf(
"failed to determine relative path base=%q target=%q: %v",
taskDir, hostPath, err)
}
// Turn relative-to-taskdir path into re-rooted absolute path to avoid
// libcontainer trying to resolve the binary using $PATH.
// Do *not* use filepath.Join as it will translate ".."s returned by
// filepath.Rel. Prepending "/" will cause the path to be rooted in the
// chroot which is the desired behavior.
return filepath.Clean("/" + rel), hostPath, nil
}
// getPathInMount for the binary in the mount's host path, constructing the path
// considering that the bin path is rooted in the mount's task path and not its
// host path. It returns the absolute path rooted inside the container and the
// absolute path on the host.
func getPathInMount(mountHostPath, mountTaskPath, bin string) (string, string, error) {
// Find the path relative to the mount point in the task so that we can
// trim off any shared prefix when we search on the host path
mountRel, err := filepath.Rel(mountTaskPath, bin)
if mountRel == "" || err != nil {
return "", "", fmt.Errorf("path was not relative to the mount task path")
}
hostPath := filepath.Join(mountHostPath, mountRel)
err = filepathIsRegular(hostPath)
if err != nil {
return "", "", err
}
// Turn relative-to-taskdir path into re-rooted absolute path to avoid
// libcontainer trying to resolve the binary using $PATH.
// Do *not* use filepath.Join as it will translate ".."s returned by
// filepath.Rel. Prepending "/" will cause the path to be rooted in the
// chroot which is the desired behavior.
return filepath.Clean("/" + bin), hostPath, nil
}
// filepathIsRegular verifies that a filepath is a regular file (i.e. not a
// directory, socket, device, etc.)
func filepathIsRegular(path string) error {
f, err := os.Stat(path)
if err != nil {
return err
}
if !f.Mode().Type().IsRegular() {
return fmt.Errorf("path was not a regular file")
}
return nil
}
func newSetCPUSetCgroupHook(cgroupPath string) runc.Hook {
return runc.NewFunctionHook(func(state *specs.State) error {
return cgroups.WriteCgroupProc(cgroupPath, state.Pid)
})
}