Michael Schurter 66fbc0f67e identity: default to RS256 for new workload ids (#18882)
OIDC mandates the support of the RS256 signing algorithm so in order to maximize workload identity's usefulness this change switches from using the EdDSA signing algorithm to RS256.

Old keys will continue to use EdDSA but new keys will use RS256. The EdDSA generation code was left in place because it's fast and cheap and I'm not going to lie I hope we get to use it again.

**Test Updates**

Most of our Variables and Keyring tests had a subtle assumption in them that the keyring would be initialized by the time the test server had elected a leader. ed25519 key generation is so fast that the fact that it was happening asynchronously with server startup didn't seem to cause problems. Sadly rsa key generation is so slow that basically all of these tests failed.

I added a new `testutil.WaitForKeyring` helper to replace `testutil.WaitForLeader` in cases where the keyring must be initialized before the test may continue. However this is mostly used in the `nomad/` package.

In the `api` and `command/agent` packages I decided to switch their helpers to wait for keyring initialization by default. This will slow down tests a bit, but allow those packages to not be as concerned with subtle server readiness details. On my machine rsa key generation takes 63ms, so hopefully the difference isn't significant on CI runners.

**TODO**

- Docs and changelog entries.
- Upgrades - right now upgrades won't get RS256 keys until their root key rotates either manually or after ~30 days.
- Observability - I'm not sure there's a way for operators to see if they're using EdDSA or RS256 unless they inspect a key. The JWKS endpoint can be inspected to see if EdDSA will be used for new identities, but it doesn't technically define which key is active. If upgrades can be fixed to automatically rotate keys, we probably don't need to worry about this.

**Requiem for ed25519**

When workload identities were first implemented we did not immediately consider OIDC compliance. Consul, Vault, and many other third parties support JWT auth methods without full OIDC compliance. For the machine<-->machine use cases workload identity is intended to fulfill, OIDC seemed like a bigger risk than asset.

EdDSA/ed25519 is the signing algorithm we chose for workload identity JWTs because of all these lovely properties:

1. Deterministic keys that can be derived from our preexisting root keys. This was perhaps the biggest factor since we already had a root encryption key around from which we could derive a signing key.
2. Wonderfully compact: 64 byte private key, 32 byte public key, 64 byte signatures. Just glorious.
3. No parameters. No choices of encodings. It's all well-defined by [RFC 8032](https://datatracker.ietf.org/doc/html/rfc8032).
4. Fastest performing signing algorithm! We don't even care that much about the performance of our chosen algorithm, but what a free bonus!
5. Arguably one of the most secure signing algorithms widely available. Not just from a cryptanalysis perspective, but from an API and usage perspective too.

Life was good with ed25519, but sadly it could not last.

[IDPs](https://en.wikipedia.org/wiki/Identity_provider), such as AWS's IAM OIDC Provider, love OIDC. They have OIDC implemented for humans, so why not reuse that OIDC support for machines as well? Since OIDC mandates RS256, many implementations don't bother implementing other signing algorithms (or at least not advertising their support). A quick survey of OIDC Discovery endpoints revealed only 2 out of 10 OIDC providers advertised support for anything other than RS256:

- [PayPal](https://www.paypalobjects.com/.well-known/openid-configuration) supports HS256
- [Yahoo](https://api.login.yahoo.com/.well-known/openid-configuration) supports ES256

RS256 only:

- [GitHub](https://token.actions.githubusercontent.com/.well-known/openid-configuration)
- [GitLab](https://gitlab.com/.well-known/openid-configuration)
- [Google](https://accounts.google.com/.well-known/openid-configuration)
- [Intuit](https://developer.api.intuit.com/.well-known/openid_configuration)
- [Microsoft](https://login.microsoftonline.com/fabrikamb2c.onmicrosoft.com/v2.0/.well-known/openid-configuration)
- [SalesForce](https://login.salesforce.com/.well-known/openid-configuration)
- [SimpleLogin (acquired by ProtonMail)](https://app.simplelogin.io/.well-known/openid-configuration/)
- [TFC](https://app.terraform.io/.well-known/openid-configuration)
2023-10-31 11:25:20 -07:00
2023-10-20 13:05:55 -04:00
2018-02-14 14:47:43 -08:00
2023-10-10 16:37:24 -04:00
2023-08-14 08:43:27 -05:00
2023-10-30 12:38:16 -05:00
2023-10-30 12:38:16 -05:00
2023-08-16 15:59:33 +01:00

Nomad License: BUSL-1.1 Discuss

HashiCorp Nomad logo

Nomad is a simple and flexible workload orchestrator to deploy and manage containers (docker, podman), non-containerized applications (executable, Java), and virtual machines (qemu) across on-prem and clouds at scale.

Nomad is supported on Linux, Windows, and macOS. A commercial version of Nomad, Nomad Enterprise, is also available.

Nomad provides several key features:

  • Deploy Containers and Legacy Applications: Nomads flexibility as an orchestrator enables an organization to run containers, legacy, and batch applications together on the same infrastructure. Nomad brings core orchestration benefits to legacy applications without needing to containerize via pluggable task drivers.

  • Simple & Reliable: Nomad runs as a single binary and is entirely self contained - combining resource management and scheduling into a single system. Nomad does not require any external services for storage or coordination. Nomad automatically handles application, node, and driver failures. Nomad is distributed and resilient, using leader election and state replication to provide high availability in the event of failures.

  • Device Plugins & GPU Support: Nomad offers built-in support for GPU workloads such as machine learning (ML) and artificial intelligence (AI). Nomad uses device plugins to automatically detect and utilize resources from hardware devices such as GPU, FPGAs, and TPUs.

  • Federation for Multi-Region, Multi-Cloud: Nomad was designed to support infrastructure at a global scale. Nomad supports federation out-of-the-box and can deploy applications across multiple regions and clouds.

  • Proven Scalability: Nomad is optimistically concurrent, which increases throughput and reduces latency for workloads. Nomad has been proven to scale to clusters of 10K+ nodes in real-world production environments.

  • HashiCorp Ecosystem: Nomad integrates seamlessly with Terraform, Consul, Vault for provisioning, service discovery, and secrets management.

Quick Start

Testing

See Developer: Getting Started for instructions on setting up a local Nomad cluster for non-production use.

Optionally, find Terraform manifests for bringing up a development Nomad cluster on a public cloud in the terraform directory.

Production

See Developer: Nomad Reference Architecture for recommended practices and a reference architecture for production deployments.

Documentation

Full, comprehensive documentation is available on the Nomad website: https://developer.hashicorp.com/nomad/docs

Guides are available on HashiCorp Developer.

Roadmap

A timeline of major features expected for the next release or two can be found in the Public Roadmap.

This roadmap is a best guess at any given point, and both release dates and projects in each release are subject to change. Do not take any of these items as commitments, especially ones later than one major release away.

Contributing

See the contributing directory for more developer documentation.

Description
No description provided
Readme 380 MiB
Languages
Go 76.9%
MDX 11%
JavaScript 8.2%
Handlebars 1.7%
HCL 1.4%
Other 0.7%